Dynamic crack arrest analysis by ordinary state-based peridynamics

Abstract

Dynamic fracture analysis for the crack arrest phenomenon is performed by ordinary state-based peridynamics formulation and discretization employing transition bond concept. Double cantilever beam specimen is chosen for our numerical evidence purpose. The analysis consists of two main phases namely, generation and application (prediction) phases. In the generation phase, the dynamic stress intensity factors of propagating and arrested cracks are estimated by the present formulation for given crack path histories, and a good agreement is achieved. As for the application phase, dynamic stress intensity factors as well as total crack lengths after crack arrests are in good agreement with the experiments. Moreover, the influence of transition bond concept on the crack arrest behavior is investigated and it is found that the transition bond is very efficient in the simulation of the crack arrest problem such that premature arrests of cracks are observed without transition bond cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Anderson TL (2005) Fracture mechanics: fundamentals and applications. Taylor & Francis, Milton Park

    Book  Google Scholar 

  2. Aoki S, Kishimoto K, Sakata M (1987) Finite element computation of dynamic stress intensity factor for a rapidly propagating crack using J-integral. Comput Mech 2:54–62

    Article  Google Scholar 

  3. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45:601–620

    Article  Google Scholar 

  4. Cheng Z, Zhang G, Wang Y, Bobaru F (2015) A peridynamic model for dynamic fracture in functionally graded materials. Compos Struct 133:529–546

    Article  Google Scholar 

  5. Coré A, Kopp JB, Girardot J, Viot P (2018) Dynamic energy release rate evaluation of rapid crack propagation in discrete element analysis. Int J Fract 214:17–28

    Article  Google Scholar 

  6. Crosley PB, Ripling EJ (1969) Dynamic fracture toughness of A533 steel. ASME J Basic Eng 91:525–534

    Article  Google Scholar 

  7. Crosley PB, Ripling EJ (1971) Crack arrest toughness of pressure vessel steels. Nuclear Eng Des 17:32–45

    Article  Google Scholar 

  8. Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2017) A discussion on failure criteria for ordinary state-based peridynamics. Eng Fract Mech 186:378–398

    Article  Google Scholar 

  9. Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Hahn GT, Hoagland RG, Kanninen MF, Rosenfield AR (1973) The characterization of fracture arrest in structural steel. In: Proceedings of the second international conference on pressure vessel technology, pp 981–994

  11. Imachi M, Tanaka S (2016) Dynamic stress intensity factors evaluation employing ordinary state-based peridynamics. Trans JSCES 2016:20160017 (in Japanese)

    Google Scholar 

  12. Imachi M, Tanaka S, Bui TQ (2018) Mixed-mode dynamic stress intensity factors evaluation using ordinary state-based peridynamics. Theor Appl Fract Mech 93:97–104

    Article  Google Scholar 

  13. Imachi M, Tanaka S, Bui TQ, Oterkus S, Oterkus E (2019) A computational approach based on ordinary state-based peridynamics with new transition bond for dynamic fracture analysis. Eng Fract Mech 206:359–374

    Article  Google Scholar 

  14. Kalthoff JF, Beinert J, Winkler S (1976) Measurements of dynamic stress intensity factors for fast running and arresting cracks in double-cantilever-beam specimens. In: Hahn GT, Kanninen MF (eds) Fast fracture and crack arrest. American Society for Testing and Materials, Philadelphia, pp 161–176

    Google Scholar 

  15. Kanninen MF (1978) A critical appraisal of solution techniques in dynamic fracture mechanics. In: Luxmoore AR, Owen DRJ (eds) Numerical methods in fracture mechanics. Pineridge Press, Swansea, pp 612–634

    Google Scholar 

  16. Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford University Press, Oxford

    Google Scholar 

  17. Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fracture 156:165–177

    Article  Google Scholar 

  18. Kobayashi A (1979) Dynamic fracture analysis by dynamic finite element method-generation and propagation anlyses. In: Perrone N, Atluri SN (eds) Nonlinear and dynamic fracture mechanics, vol 35. ASME, New York, pp 19–37

    Google Scholar 

  19. Kopp JB, Fond C, Hochstetter G (2018) Rapid crack propagation in PA11: an application to pipe structure. Eng Fract Mech 202:445–457

    Article  Google Scholar 

  20. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  Google Scholar 

  21. Le QV, Chan WK, Schwartz J (2014) A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int J Numer Meth Eng 98:547–561

    Article  Google Scholar 

  22. Liu ZL, Menouillard T, Belytschko T (2011) An XFEM/spectral element method for dynamic crack propagation. Int J Fract 169:183–198

    Article  CAS  Google Scholar 

  23. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, Berlin

    Book  Google Scholar 

  24. Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM). Int J Numer Meth Eng 68:911–939

    Article  Google Scholar 

  25. Nishioka T, Atluri SN (1982) Numerical analysis of dynamic crack propagation: generation and prediction studies. Eng Fract Mech 16:303–332

    Article  Google Scholar 

  26. Nishioka T, Stonesifer RB, Atluri SN (1981) An evaluation of several moving singularity finite element models for fast fracture analysis. Eng Fract Mech 15:205–218

    Article  Google Scholar 

  27. Oterkus E, Madenci E (2012) Peridynamic analysis of fiber-reinforced composite materials. J Mech Mater Struct 7:45–84

    Article  Google Scholar 

  28. Prabel B, Combescure A, Gravouil A, Marie S (2007) Level set X-FEM non-matching meshes: application to dynamic crack propagation in elastic-plastic media. Int J Numer Meth Eng 69:1553–1569

    Article  Google Scholar 

  29. Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Amsterdam

    Google Scholar 

  30. Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int J Numer Meth Eng 63:631–659

    Article  Google Scholar 

  31. Shibanuma K, Yanagimoto F, Namegawa T, Suzuki K, Aihara S (2016a) Brittle crack propagation/arrest behavior in steel plate—Part I: model formulation. Eng Fract Mech 162:324–340

    Article  Google Scholar 

  32. Shibanuma K, Yanagimoto F, Namegawa T, Suzuki K, Aihara S (2016b) Brittle crack propagation/arrest behavior in steel plate—Part II: experiments and model validation. Eng Fract Mech 162:341–360

    Article  Google Scholar 

  33. Shibanuma K, Yanagimoto F, Suzuki K, Aihara S (2018) Brittle crack propagation/arrest behavior in steel plate—Part III: discussions on arrest design. Eng Fract Mech 190:104–119

    Article  Google Scholar 

  34. Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2018) An adaptive multi-grid peridynamic method for dynamic fracture analysis. Int J Mech Sci 144:600–617

    Article  Google Scholar 

  35. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  Google Scholar 

  36. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  37. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93:13–37

    Article  Google Scholar 

  38. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184

    Article  Google Scholar 

  39. Zhang Y, Qiao P (2019) A new bond failure criterion for ordinary state-based peridynamic mode II fracture analysis. Int J Fract 215:105–128

    Article  Google Scholar 

  40. Zhao J, Tang H, Xue S (2018) A new fracture criterion for peridynamic and dual-horizon peridynamics. Front Struct Civ Eng 12:629–641

    Article  Google Scholar 

  41. Zhou X, Wang Y, Qian Q (2016) Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. Eur J Mech Solid 60:277–299

    Article  Google Scholar 

  42. Zhou W, Liu D, Liu N (2017) Analyzing dynamic fracture process in fiber-reinforced composite materials with a peridynamic model. Eng Fract Mech 178:60–76

    Article  Google Scholar 

  43. Zienkiewicz O, Taylor R, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier and Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by Sasakawa Scientific Research Grant from the Japan Science Society and the JSPS Grants-in-Aid for Scientific Research (C)(18K04582), Grant-in-Aid for JSPS Fellows (19J14053).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satoyuki Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imachi, M., Tanaka, S., Ozdemir, M. et al. Dynamic crack arrest analysis by ordinary state-based peridynamics. Int J Fract 221, 155–169 (2020). https://doi.org/10.1007/s10704-019-00416-3

Download citation