Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron

Abstract

The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Álvarez G, Peral LB, Rodríguez C et al (2019) Hydrogen embrittlement of structural steels: effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. Int J Hydrog Energy 44:15634–15643. https://doi.org/10.1016/J.IJHYDENE.2019.03.279

    Article  Google Scholar 

  2. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag A J Theor Exp Appl Phys 21:399–424. https://doi.org/10.1080/14786437008238426

    CAS  Article  Google Scholar 

  3. Bechtle S, Kumar M, Somerday BP et al (2009) Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater 57:4148–4157. https://doi.org/10.1016/J.ACTAMAT.2009.05.012

    CAS  Article  Google Scholar 

  4. Bouhattate J, Legrand E, Feaugas X (2011) Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: I—consequences of trapping. Int J Hydrog Energy 36:12644–12652. https://doi.org/10.1016/J.IJHYDENE.2011.06.143

    CAS  Article  Google Scholar 

  5. Crank J (1979) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  6. Dadfarnia M, Sofronis P, Neeraj T (2011) Hydrogen interaction with multiple traps: can it be used to mitigate embrittlement? Int J Hydrog Energy 36:10141–10148. https://doi.org/10.1016/j.ijhydene.2011.05.027

    CAS  Article  Google Scholar 

  7. del Busto S, Betegón C, Martínez-Pañeda E (2017) A cohesive zone framework for environmentally assisted fatigue. Eng Fract Mech 185:210–226. https://doi.org/10.1016/J.ENGFRACMECH.2017.05.021

    Article  Google Scholar 

  8. Devanathan MAV, Stachurski Z, Beck W (1963) A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths. J Electrochem Soc 110:886–890

    CAS  Article  Google Scholar 

  9. Díaz A, Alegre JM, Cuesta II (2016a) Coupled hydrogen diffusion simulation using a heat transfer analogy. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2016.07.020

    Article  Google Scholar 

  10. Díaz A, Alegre JM, Cuesta II (2016b) A review on diffusion modelling in hydrogen related failures of metals. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2016.05.019

    Article  Google Scholar 

  11. Dietzel W, Pfuff M, Juilfs GG (2006) Hydrogen permeation in plastically deformed steel membranes. Mater Sci 42:78–84. https://doi.org/10.1007/s11003-006-0059-8

    CAS  Article  Google Scholar 

  12. Frappart S, Feaugas X, Creus J et al (2010) Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test. J Phys Chem Solids 71:1467–1479. https://doi.org/10.1016/J.JPCS.2010.07.017

    CAS  Article  Google Scholar 

  13. Frappart S, Feaugas X, Creus J et al (2012) Hydrogen solubility, diffusivity and trapping in a tempered Fe–C–Cr martensitic steel under various mechanical stress states. Mater Sci Eng A 534:384–393. https://doi.org/10.1016/J.MSEA.2011.11.084

    CAS  Article  Google Scholar 

  14. Gerberich WW, Marsh PG, Hoehn JW (1996) Hydrogen induced cracking mechanisms–are there critical experiments? Hydrogen effects in materials. Wiley, New York, pp 539–551

    Google Scholar 

  15. Gesnouin C, Hazarabedian A, Bruzzoni P et al (2004) Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels. Corros Sci 46:1633–1647. https://doi.org/10.1016/J.CORSCI.2003.10.006

    CAS  Article  Google Scholar 

  16. Hirth J (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11:861–890. https://doi.org/10.1007/BF02654700

    Article  Google Scholar 

  17. Hoch BO (2015) Modelling of hydrogen diffusion in heterogeneous materials: implications of the grain boundary connectivity. Doctoral dissertation, Universite de La Rochelle

  18. Hoch BO, Metsue A, Bouhattate J, Feaugas X (2015) Effects of grain-boundary networks on the macroscopic diffusivity of hydrogen in polycrystalline materials. Comput Mater Sci 97:276–284

    Article  Google Scholar 

  19. ISO 17081:2014 Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique. International Organization for Standardization, 2014. www.iso.org

  20. Jiang DE, Carter EA (2004) Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys Rev B 70:64102

    Article  Google Scholar 

  21. Jothi S, Croft TN, Wright L et al (2015) Multi-phase modelling of intergranular hydrogen segregation/trapping for hydrogen embrittlement. Int J Hydrog Energy 40:15105–15123. https://doi.org/10.1016/J.IJHYDENE.2015.08.093

    CAS  Article  Google Scholar 

  22. Juilfs G (2002) Das Diffusionsverhalten von Wasserstoff in einem niedriglegierten Stahl unter Berücksichtigung des Verformungsgrades. GRIN Verlag, Munich

    Google Scholar 

  23. Kharin V (2014) Comments on “Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: I—consequences of trapping” [Int J Hydrog Energy (2011) 36:2644–12652] and “... II—consequences of trapping and an oxide layer” [Int J Hydrog Energy (2012) 37:13574–13582], “Corrigenda...” to both [Int J Hydrog Energy (2014) 39:2430], and on “... III—comparison with experimental results from the literature” [Int J Hydrog Energy (2014) 39:1145–1155] with “Gene Int J Hydrog Energy 39:19846–19850. https://doi.org/10.1016/J.IJHYDENE.2014.09.032

  24. Koyama M, Rohwerder M, Tasan CC et al (2017a) Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation. Mater Sci Technol 33:1481–1496. https://doi.org/10.1080/02670836.2017.1299276

    CAS  Article  Google Scholar 

  25. Koyama M, Yamasaki D, Nagashima T et al (2017b) In situ observations of silver-decoration evolution under hydrogen permeation: effects of grain boundary misorientation on hydrogen flux in pure iron. Scr Mater 129:48–51. https://doi.org/10.1016/J.SCRIPTAMAT.2016.10.027

    CAS  Article  Google Scholar 

  26. Kumnick AJ, Johnson HH (1980) Deep trapping states for hydrogen in deformed iron. Acta Metall 28:33–39. https://doi.org/10.1016/0001-6160(80)90038-3

    CAS  Article  Google Scholar 

  27. Lan L, Kong X, Hu Z et al (2016) Hydrogen permeation behavior in relation to microstructural evolution of low carbon bainitic steel weldments. Corros Sci 112:180–193. https://doi.org/10.1016/J.CORSCI.2016.07.025

    CAS  Article  Google Scholar 

  28. Legrand E, Feaugas X, Bouhattate J (2014) Generalized model of desorption kinetics: characterization of hydrogen trapping in a homogeneous membrane. Int J Hydrog Energy 39:8374–8384. https://doi.org/10.1016/J.IJHYDENE.2014.03.191

    CAS  Article  Google Scholar 

  29. Liu MA, Rivera-Díaz-del-Castillo PEJ, Barraza-Fierro JI et al (2019) Microstructural influence on hydrogen permeation and trapping in steels. Mater Des 167:107605. https://doi.org/10.1016/J.MATDES.2019.107605

    CAS  Article  Google Scholar 

  30. Macadre A, Artamonov M, Matsuoka S, Furtado J (2011) Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni–Cr–Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station. Eng Fract Mech 78:3196–3211. https://doi.org/10.1016/J.ENGFRACMECH.2011.09.007

    Article  Google Scholar 

  31. Macadre A, Nakada N, Tsuchiyama T, Takaki S (2015) Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel. Int J Hydrog Energy 40:10697–10703. https://doi.org/10.1016/J.IJHYDENE.2015.06.111

    CAS  Article  Google Scholar 

  32. Martin ML, Somerday BP, Ritchie RO et al (2012) Hydrogen-induced intergranular failure in nickel revisited. Acta Mater 60:2739–2745. https://doi.org/10.1016/J.ACTAMAT.2012.01.040

    CAS  Article  Google Scholar 

  33. Martínez-Pañeda E, del Busto S, Niordson CF, Betegón C (2016a) Strain gradient plasticity modeling of hydrogen diffusion to the crack tip. Int J Hydrog Energy 41:10265–10274. https://doi.org/10.1016/j.ijhydene.2016.05.014

    CAS  Article  Google Scholar 

  34. Martínez-Pañeda E, Niordson CF, Gangloff RP (2016b) Strain gradient plasticity-based modeling of hydrogen environment assisted cracking. Acta Mater 117:321–332. https://doi.org/10.1016/J.ACTAMAT.2016.07.022

    Article  Google Scholar 

  35. Martínez-Pañeda E, Golahmar A, Niordson CF (2018) A phase field formulation for hydrogen assisted cracking. Comput Methods Appl Mech Eng 342:742–761. https://doi.org/10.1016/J.CMA.2018.07.021

    Article  Google Scholar 

  36. McMahon CJ (2001) Hydrogen-induced intergranular fracture of steels. Eng Fract Mech 68:773–788. https://doi.org/10.1016/S0013-7944(00)00124-7

    Article  Google Scholar 

  37. McNabb A, Foster PK (1963) A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227:618–627

    CAS  Google Scholar 

  38. Miresmaeili R, Ogino M, Nakagawa T, Kanayama H (2010) A coupled elastoplastic-transient hydrogen diffusion analysis to simulate the onset of necking in tension by using the finite element method. Int J Hydrog Energy 35:1506–1514. https://doi.org/10.1016/j.ijhydene.2009.11.024

    CAS  Article  Google Scholar 

  39. Montella C (1999) Discussion on permeation transients in terms of insertion reaction mechanism and kinetics. J Electroanal Chem 465:37–50. https://doi.org/10.1016/S0022-0728(99)00051-0

    CAS  Article  Google Scholar 

  40. Nagao A, Smith CD, Dadfarnia M et al (2012) The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel. Acta Mater 60:5182–5189. https://doi.org/10.1016/J.ACTAMAT.2012.06.040

    CAS  Article  Google Scholar 

  41. Novak P, Yuan R, Somerday BP et al (2010) A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J Mech Phys Solids 58:206–226. https://doi.org/10.1016/J.JMPS.2009.10.005

    CAS  Article  Google Scholar 

  42. Olden V, Thaulow C, Johnsen R et al (2008) Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25%Cr duplex stainless steel. Eng Fract Mech 75:2333–2351. https://doi.org/10.1016/j.engfracmech.2007.09.003

    Article  Google Scholar 

  43. Ono K, Meshii M (1992) Hydrogen detrapping from grain boundaries and dislocations in high purity iron. Acta Metall Mater 40:1357–1364. https://doi.org/10.1016/0956-7151(92)90436-I

    CAS  Article  Google Scholar 

  44. Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Metall 18:147–157. https://doi.org/10.1016/0001-6160(70)90078-7

    CAS  Article  Google Scholar 

  45. Oudriss A, Creus J, Bouhattate J et al (2012) Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Mater 60:6814–6828. https://doi.org/10.1016/j.actamat.2012.09.004

    CAS  Article  Google Scholar 

  46. Park I-J, Lee S, Jeon H, Lee Y-K (2015) The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0.6C twinning-induced plasticity steel. Corros Sci 93:63–69. https://doi.org/10.1016/J.CORSCI.2015.01.012

    CAS  Article  Google Scholar 

  47. Raina A, Deshpande VS, Fleck NA (2017) Analysis of electro-permeation of hydrogen in metallic alloys. Philos Trans A Math Phys Eng Sci 375:20160409. https://doi.org/10.1098/rsta.2016.0409

    CAS  Article  Google Scholar 

  48. Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37:317–350. https://doi.org/10.1016/0022-5096(89)90002-1

    Article  Google Scholar 

  49. Sofronis P, Liang Y, Aravas N (2001) Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur J Mech A/Solids 20:857–872. https://doi.org/10.1016/S0997-7538(01)01179-2

    Article  Google Scholar 

  50. Song EJ (2015) Hydrogen desorption in steels. Grad Inst Ferr Technol, 106

  51. Song EJ, Suh D-W, Bhadeshia HKDH (2013) Theory for hydrogen desorption in ferritic steel. Comput Mater Sci 79:36–44. https://doi.org/10.1016/J.COMMATSCI.2013.06.008

    CAS  Article  Google Scholar 

  52. Takasawa K, Ikeda R, Ishikawa N, Ishigaki R (2012) Effects of grain size and dislocation density on the susceptibility to high-pressure hydrogen environment embrittlement of high-strength low-alloy steels. Int J Hydrog Energy 37:2669–2675. https://doi.org/10.1016/J.IJHYDENE.2011.10.099

    CAS  Article  Google Scholar 

  53. Toribio J, Kharin V (2015) A generalised model of hydrogen diffusion in metals with multiple trap types. Philos Mag. https://doi.org/10.1080/14786435.2015.1079660

    Article  Google Scholar 

  54. Turnbull A (1993) Modelling of environment assisted cracking. Corros Sci 34:921–960. https://doi.org/10.1016/0010-938X(93)90072-O

    CAS  Article  Google Scholar 

  55. Turnbull A (2015) Perspectives on hydrogen uptake, diffusion and trapping. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2015.06.147

    Article  Google Scholar 

  56. Turnbull A, de Santa Saenz, Maria M, Thomas ND (1989) The effect of H2S concentration and pH on hydrogen permeation in AISI 410 stainless steel in 5% NaCl. Corros Sci 29:89–104. https://doi.org/10.1016/0010-938X(89)90082-6

    CAS  Article  Google Scholar 

  57. Turnbull A, Ferriss DH, Anzai H (1996) Modelling of the hydrogen distribution at a crack tip. Mater Sci Eng A 206:1–13. https://doi.org/10.1016/0921-5093(95)09897-6

    Article  Google Scholar 

  58. Van den Eeckhout E, Laureys A, Van Ingelgem Y, Verbeken K (2017) Hydrogen permeation through deformed and heat-treated Armco pure iron. Mater Sci Technol 33:1515–1523. https://doi.org/10.1080/02670836.2017.1342015

    CAS  Article  Google Scholar 

  59. Vecchi L, Simillion H, Montoya R et al (2018a) Modelling of hydrogen permeation experiments in iron alloys: characterization of the accessible parameters—Part I—the entry side. Electrochim Acta 262:57–65. https://doi.org/10.1016/J.ELECTACTA.2017.12.172

    CAS  Article  Google Scholar 

  60. Vecchi L, Simillion H, Montoya R et al (2018b) Modelling of hydrogen permeation experiments in iron alloys: characterization of the accessible parameters—Part II—the exit side. Electrochim Acta 262:153–161. https://doi.org/10.1016/J.ELECTACTA.2017.12.173

    CAS  Article  Google Scholar 

  61. Venezuela J, Blanch J, Zulkiply A et al (2018) Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corros Sci 135:120–135. https://doi.org/10.1016/J.CORSCI.2018.02.037

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the project MINECO Refs: MAT2014-58738-C3-2-R and RTI2018-096070-B-C33. E. Martínez-Pañeda acknowledges financial support from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 609405 (COFUNDPostdocDTU).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Díaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Díaz, A., Cuesta, I.I., Martinez-Pañeda, E. et al. Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron. Int J Fract 223, 17–35 (2020). https://doi.org/10.1007/s10704-019-00411-8

Download citation

Keywords

  • Hydrogen diffusion
  • Permeation test
  • Finite element simulation
  • Grain boundary trapping