Advertisement

Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron

  • A. DíazEmail author
  • I. I. Cuesta
  • E. Martinez-Pañeda
  • J. M. Alegre
Original Paper
  • 29 Downloads

Abstract

The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.

Keywords

Hydrogen diffusion Permeation test Finite element simulation Grain boundary trapping 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the project MINECO Refs: MAT2014-58738-C3-2-R and RTI2018-096070-B-C33. E. Martínez-Pañeda acknowledges financial support from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 609405 (COFUNDPostdocDTU).

References

  1. Álvarez G, Peral LB, Rodríguez C et al (2019) Hydrogen embrittlement of structural steels: effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. Int J Hydrog Energy 44:15634–15643.  https://doi.org/10.1016/J.IJHYDENE.2019.03.279 CrossRefGoogle Scholar
  2. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag A J Theor Exp Appl Phys 21:399–424.  https://doi.org/10.1080/14786437008238426 CrossRefGoogle Scholar
  3. Bechtle S, Kumar M, Somerday BP et al (2009) Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater 57:4148–4157.  https://doi.org/10.1016/J.ACTAMAT.2009.05.012 CrossRefGoogle Scholar
  4. Bouhattate J, Legrand E, Feaugas X (2011) Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: I—consequences of trapping. Int J Hydrog Energy 36:12644–12652.  https://doi.org/10.1016/J.IJHYDENE.2011.06.143 CrossRefGoogle Scholar
  5. Crank J (1979) The mathematics of diffusion. Oxford University Press, OxfordGoogle Scholar
  6. Dadfarnia M, Sofronis P, Neeraj T (2011) Hydrogen interaction with multiple traps: can it be used to mitigate embrittlement? Int J Hydrog Energy 36:10141–10148.  https://doi.org/10.1016/j.ijhydene.2011.05.027 CrossRefGoogle Scholar
  7. del Busto S, Betegón C, Martínez-Pañeda E (2017) A cohesive zone framework for environmentally assisted fatigue. Eng Fract Mech 185:210–226.  https://doi.org/10.1016/J.ENGFRACMECH.2017.05.021 CrossRefGoogle Scholar
  8. Devanathan MAV, Stachurski Z, Beck W (1963) A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths. J Electrochem Soc 110:886–890CrossRefGoogle Scholar
  9. Díaz A, Alegre JM, Cuesta II (2016a) Coupled hydrogen diffusion simulation using a heat transfer analogy. Int J Mech Sci.  https://doi.org/10.1016/j.ijmecsci.2016.07.020 CrossRefGoogle Scholar
  10. Díaz A, Alegre JM, Cuesta II (2016b) A review on diffusion modelling in hydrogen related failures of metals. Eng Fail Anal.  https://doi.org/10.1016/j.engfailanal.2016.05.019 CrossRefGoogle Scholar
  11. Dietzel W, Pfuff M, Juilfs GG (2006) Hydrogen permeation in plastically deformed steel membranes. Mater Sci 42:78–84.  https://doi.org/10.1007/s11003-006-0059-8 CrossRefGoogle Scholar
  12. Frappart S, Feaugas X, Creus J et al (2010) Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test. J Phys Chem Solids 71:1467–1479.  https://doi.org/10.1016/J.JPCS.2010.07.017 CrossRefGoogle Scholar
  13. Frappart S, Feaugas X, Creus J et al (2012) Hydrogen solubility, diffusivity and trapping in a tempered Fe–C–Cr martensitic steel under various mechanical stress states. Mater Sci Eng A 534:384–393.  https://doi.org/10.1016/J.MSEA.2011.11.084 CrossRefGoogle Scholar
  14. Gerberich WW, Marsh PG, Hoehn JW (1996) Hydrogen induced cracking mechanisms–are there critical experiments? Hydrogen effects in materials. Wiley, New York, pp 539–551Google Scholar
  15. Gesnouin C, Hazarabedian A, Bruzzoni P et al (2004) Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels. Corros Sci 46:1633–1647.  https://doi.org/10.1016/J.CORSCI.2003.10.006 CrossRefGoogle Scholar
  16. Hirth J (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11:861–890.  https://doi.org/10.1007/BF02654700 CrossRefGoogle Scholar
  17. Hoch BO (2015) Modelling of hydrogen diffusion in heterogeneous materials: implications of the grain boundary connectivity. Doctoral dissertation, Universite de La RochelleGoogle Scholar
  18. Hoch BO, Metsue A, Bouhattate J, Feaugas X (2015) Effects of grain-boundary networks on the macroscopic diffusivity of hydrogen in polycrystalline materials. Comput Mater Sci 97:276–284CrossRefGoogle Scholar
  19. ISO 17081:2014 Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique. International Organization for Standardization, 2014. www.iso.org
  20. Jiang DE, Carter EA (2004) Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys Rev B 70:64102CrossRefGoogle Scholar
  21. Jothi S, Croft TN, Wright L et al (2015) Multi-phase modelling of intergranular hydrogen segregation/trapping for hydrogen embrittlement. Int J Hydrog Energy 40:15105–15123.  https://doi.org/10.1016/J.IJHYDENE.2015.08.093 CrossRefGoogle Scholar
  22. Juilfs G (2002) Das Diffusionsverhalten von Wasserstoff in einem niedriglegierten Stahl unter Berücksichtigung des Verformungsgrades. GRIN Verlag, MunichGoogle Scholar
  23. Kharin V (2014) Comments on “Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: I—consequences of trapping” [Int J Hydrog Energy (2011) 36:2644–12652] and “... II—consequences of trapping and an oxide layer” [Int J Hydrog Energy (2012) 37:13574–13582], “Corrigenda...” to both [Int J Hydrog Energy (2014) 39:2430], and on “... III—comparison with experimental results from the literature” [Int J Hydrog Energy (2014) 39:1145–1155] with “Gene Int J Hydrog Energy 39:19846–19850.  https://doi.org/10.1016/J.IJHYDENE.2014.09.032
  24. Koyama M, Rohwerder M, Tasan CC et al (2017a) Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation. Mater Sci Technol 33:1481–1496.  https://doi.org/10.1080/02670836.2017.1299276 CrossRefGoogle Scholar
  25. Koyama M, Yamasaki D, Nagashima T et al (2017b) In situ observations of silver-decoration evolution under hydrogen permeation: effects of grain boundary misorientation on hydrogen flux in pure iron. Scr Mater 129:48–51.  https://doi.org/10.1016/J.SCRIPTAMAT.2016.10.027 CrossRefGoogle Scholar
  26. Kumnick AJ, Johnson HH (1980) Deep trapping states for hydrogen in deformed iron. Acta Metall 28:33–39.  https://doi.org/10.1016/0001-6160(80)90038-3 CrossRefGoogle Scholar
  27. Lan L, Kong X, Hu Z et al (2016) Hydrogen permeation behavior in relation to microstructural evolution of low carbon bainitic steel weldments. Corros Sci 112:180–193.  https://doi.org/10.1016/J.CORSCI.2016.07.025 CrossRefGoogle Scholar
  28. Legrand E, Feaugas X, Bouhattate J (2014) Generalized model of desorption kinetics: characterization of hydrogen trapping in a homogeneous membrane. Int J Hydrog Energy 39:8374–8384.  https://doi.org/10.1016/J.IJHYDENE.2014.03.191 CrossRefGoogle Scholar
  29. Liu MA, Rivera-Díaz-del-Castillo PEJ, Barraza-Fierro JI et al (2019) Microstructural influence on hydrogen permeation and trapping in steels. Mater Des 167:107605.  https://doi.org/10.1016/J.MATDES.2019.107605 CrossRefGoogle Scholar
  30. Macadre A, Artamonov M, Matsuoka S, Furtado J (2011) Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni–Cr–Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station. Eng Fract Mech 78:3196–3211.  https://doi.org/10.1016/J.ENGFRACMECH.2011.09.007 CrossRefGoogle Scholar
  31. Macadre A, Nakada N, Tsuchiyama T, Takaki S (2015) Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel. Int J Hydrog Energy 40:10697–10703.  https://doi.org/10.1016/J.IJHYDENE.2015.06.111 CrossRefGoogle Scholar
  32. Martin ML, Somerday BP, Ritchie RO et al (2012) Hydrogen-induced intergranular failure in nickel revisited. Acta Mater 60:2739–2745.  https://doi.org/10.1016/J.ACTAMAT.2012.01.040 CrossRefGoogle Scholar
  33. Martínez-Pañeda E, del Busto S, Niordson CF, Betegón C (2016a) Strain gradient plasticity modeling of hydrogen diffusion to the crack tip. Int J Hydrog Energy 41:10265–10274.  https://doi.org/10.1016/j.ijhydene.2016.05.014 CrossRefGoogle Scholar
  34. Martínez-Pañeda E, Niordson CF, Gangloff RP (2016b) Strain gradient plasticity-based modeling of hydrogen environment assisted cracking. Acta Mater 117:321–332.  https://doi.org/10.1016/J.ACTAMAT.2016.07.022 CrossRefGoogle Scholar
  35. Martínez-Pañeda E, Golahmar A, Niordson CF (2018) A phase field formulation for hydrogen assisted cracking. Comput Methods Appl Mech Eng 342:742–761.  https://doi.org/10.1016/J.CMA.2018.07.021 CrossRefGoogle Scholar
  36. McMahon CJ (2001) Hydrogen-induced intergranular fracture of steels. Eng Fract Mech 68:773–788.  https://doi.org/10.1016/S0013-7944(00)00124-7 CrossRefGoogle Scholar
  37. McNabb A, Foster PK (1963) A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227:618–627Google Scholar
  38. Miresmaeili R, Ogino M, Nakagawa T, Kanayama H (2010) A coupled elastoplastic-transient hydrogen diffusion analysis to simulate the onset of necking in tension by using the finite element method. Int J Hydrog Energy 35:1506–1514.  https://doi.org/10.1016/j.ijhydene.2009.11.024 CrossRefGoogle Scholar
  39. Montella C (1999) Discussion on permeation transients in terms of insertion reaction mechanism and kinetics. J Electroanal Chem 465:37–50.  https://doi.org/10.1016/S0022-0728(99)00051-0 CrossRefGoogle Scholar
  40. Nagao A, Smith CD, Dadfarnia M et al (2012) The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel. Acta Mater 60:5182–5189.  https://doi.org/10.1016/J.ACTAMAT.2012.06.040 CrossRefGoogle Scholar
  41. Novak P, Yuan R, Somerday BP et al (2010) A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J Mech Phys Solids 58:206–226.  https://doi.org/10.1016/J.JMPS.2009.10.005 CrossRefGoogle Scholar
  42. Olden V, Thaulow C, Johnsen R et al (2008) Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25%Cr duplex stainless steel. Eng Fract Mech 75:2333–2351.  https://doi.org/10.1016/j.engfracmech.2007.09.003 CrossRefGoogle Scholar
  43. Ono K, Meshii M (1992) Hydrogen detrapping from grain boundaries and dislocations in high purity iron. Acta Metall Mater 40:1357–1364.  https://doi.org/10.1016/0956-7151(92)90436-I CrossRefGoogle Scholar
  44. Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Metall 18:147–157.  https://doi.org/10.1016/0001-6160(70)90078-7 CrossRefGoogle Scholar
  45. Oudriss A, Creus J, Bouhattate J et al (2012) Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Mater 60:6814–6828.  https://doi.org/10.1016/j.actamat.2012.09.004 CrossRefGoogle Scholar
  46. Park I-J, Lee S, Jeon H, Lee Y-K (2015) The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0.6C twinning-induced plasticity steel. Corros Sci 93:63–69.  https://doi.org/10.1016/J.CORSCI.2015.01.012 CrossRefGoogle Scholar
  47. Raina A, Deshpande VS, Fleck NA (2017) Analysis of electro-permeation of hydrogen in metallic alloys. Philos Trans A Math Phys Eng Sci 375:20160409.  https://doi.org/10.1098/rsta.2016.0409 CrossRefGoogle Scholar
  48. Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37:317–350.  https://doi.org/10.1016/0022-5096(89)90002-1 CrossRefGoogle Scholar
  49. Sofronis P, Liang Y, Aravas N (2001) Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur J Mech A/Solids 20:857–872.  https://doi.org/10.1016/S0997-7538(01)01179-2 CrossRefGoogle Scholar
  50. Song EJ (2015) Hydrogen desorption in steels. Grad Inst Ferr Technol, 106Google Scholar
  51. Song EJ, Suh D-W, Bhadeshia HKDH (2013) Theory for hydrogen desorption in ferritic steel. Comput Mater Sci 79:36–44.  https://doi.org/10.1016/J.COMMATSCI.2013.06.008 CrossRefGoogle Scholar
  52. Takasawa K, Ikeda R, Ishikawa N, Ishigaki R (2012) Effects of grain size and dislocation density on the susceptibility to high-pressure hydrogen environment embrittlement of high-strength low-alloy steels. Int J Hydrog Energy 37:2669–2675.  https://doi.org/10.1016/J.IJHYDENE.2011.10.099 CrossRefGoogle Scholar
  53. Toribio J, Kharin V (2015) A generalised model of hydrogen diffusion in metals with multiple trap types. Philos Mag.  https://doi.org/10.1080/14786435.2015.1079660 CrossRefGoogle Scholar
  54. Turnbull A (1993) Modelling of environment assisted cracking. Corros Sci 34:921–960.  https://doi.org/10.1016/0010-938X(93)90072-O CrossRefGoogle Scholar
  55. Turnbull A (2015) Perspectives on hydrogen uptake, diffusion and trapping. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2015.06.147 CrossRefGoogle Scholar
  56. Turnbull A, de Santa Saenz, Maria M, Thomas ND (1989) The effect of H2S concentration and pH on hydrogen permeation in AISI 410 stainless steel in 5% NaCl. Corros Sci 29:89–104.  https://doi.org/10.1016/0010-938X(89)90082-6 CrossRefGoogle Scholar
  57. Turnbull A, Ferriss DH, Anzai H (1996) Modelling of the hydrogen distribution at a crack tip. Mater Sci Eng A 206:1–13.  https://doi.org/10.1016/0921-5093(95)09897-6 CrossRefGoogle Scholar
  58. Van den Eeckhout E, Laureys A, Van Ingelgem Y, Verbeken K (2017) Hydrogen permeation through deformed and heat-treated Armco pure iron. Mater Sci Technol 33:1515–1523.  https://doi.org/10.1080/02670836.2017.1342015 CrossRefGoogle Scholar
  59. Vecchi L, Simillion H, Montoya R et al (2018a) Modelling of hydrogen permeation experiments in iron alloys: characterization of the accessible parameters—Part I—the entry side. Electrochim Acta 262:57–65.  https://doi.org/10.1016/J.ELECTACTA.2017.12.172 CrossRefGoogle Scholar
  60. Vecchi L, Simillion H, Montoya R et al (2018b) Modelling of hydrogen permeation experiments in iron alloys: characterization of the accessible parameters—Part II—the exit side. Electrochim Acta 262:153–161.  https://doi.org/10.1016/J.ELECTACTA.2017.12.173 CrossRefGoogle Scholar
  61. Venezuela J, Blanch J, Zulkiply A et al (2018) Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corros Sci 135:120–135.  https://doi.org/10.1016/J.CORSCI.2018.02.037 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Structural Integrity GroupUniversidad de BurgosBurgosSpain
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUnited Kingdom
  3. 3.Department of Civil and Environmental EngineeringImperial College LondonLondonUK

Personalised recommendations