Skip to main content

Phase-field fracture simulations of the Brazilian splitting test

Abstract

The tensile strength of brittle and tension-sensitive materials can be determined experimentally by the Brazilian test. To complement the experimental results numerical methods are required which predict the effective properties of the material as an outcome of the calculations. Here a modified phase-field approach to fracture is presented which is able to find the position of the crack, to determine the stress distribution in the (cracking) specimen and to quantify the tensile resistance of the material. Especially we discuss the definition of the phase-field crack driving forces and show by comparison to the analytical solution of the Brazilian test that common strategies of energy splitting are not applicable. Compressive split fracture needs to be driven by the stress state and requires a driving force based on a criterion of fracture mechanics. To demonstrate the predictive capability of the presented approach numerical simulations in two and three dimensions are compared to experimentally obtained results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  • Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60(12):2100–2126

    Article  Google Scholar 

  • Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T (2016) Fourth order phase-field model for local max-ent approximants applied to crack propagation. Comput Methods Appl Mech Eng 312:254–275

    Article  Google Scholar 

  • Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  Google Scholar 

  • ASTM C. 496/C496M-11 (2011) Standard test method for splitting tensile strength of cylindrical concrete specimens

  • Awaji H, Sato S (1978) Combined mode fracture toughness measurement by the disk test. J Eng Mater Technol 100(2):175–182

    Article  Google Scholar 

  • Bilgen C, Weinberg K (2019) On the crack-driving force of phase-field models in linearized and finite elasticity. Comput Methods Appl Mech Eng 353:348–372

    Article  Google Scholar 

  • Bilgen C, Kopaničáková A, Krause R, Weinberg K (2017) A phase-field approach to conchoidal fracture. Meccanica 53(6):1203–1219

    Article  Google Scholar 

  • Bilgen C, Kopaničáková A, Krause R, Weinberg K (2019) A detailed investigation of the model influencing parameters of the phase-field fracture approach. Appl Math Mech. https://doi.org/10.1002/gamm.202000005

    Article  Google Scholar 

  • Boldrini J, de Moraes EB, Chiarelli L, Fumes F, Bittencourt M (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Comput Methods Appl Mech Eng 312:395–427

    Article  Google Scholar 

  • Borden M, Verhoosel C, Scott M, Hughes T, Landis C (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  Google Scholar 

  • Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    Article  Google Scholar 

  • Bourdin B, Francfort G, Marigo J (2008) The variational approach to fracture. J Elast 9:5–148. https://doi.org/10.1007/s10659-007-9107-3

    Article  Google Scholar 

  • BS EN 12390-6 (2009) Din12390-6, testing hardened concrete–part 6: tensile splitting strength of test specimens. Deutsches Institut für Normung, Berlin, pp 336–341

  • Cai M, Kaiser P (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int J Rock Mech Mining Sci 41:478–483

    Article  Google Scholar 

  • Dally T, Weinberg K (2017) The phase-field approach as a tool for experimental validations in fracture mechanics. Continuum Mech Thermodyn 29(4):947–956

    Article  Google Scholar 

  • Föppl L, Föppl A (1920) Drang und Zwang (Eine höhere Festigkeitslehre für Ingenieure), 2Bde. R. Oldenbourg; München und Berlin

  • Frocht MM (1948) Photoelasticity, vol. ii. N. York p. 333

  • García VJ, Márquez CO, Zúñiga-Suárez AR, Zuñiga-Torres BC, Villalta-Granda LJ (2017) Brazilian test of concrete specimens subjected to different loading geometries: review and new insights. Int J Concrete Struct Mater 11(2):343–363

    Article  Google Scholar 

  • Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105505

    Article  Google Scholar 

  • Hertz H (1883) Über die Verteilung der Druckkräfte in einem elastischen Kreiszylinder vol. 28

  • Khosravani MR, Silani M, Weinberg K (2018) Fracture studies of ultra-high performance concrete using dynamic Brazilian tests. Theor Appl Fract Mech 93:302–310

    Article  Google Scholar 

  • Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2015) An assessment of the phase field formulation for crack growth. Comput Methods Appl Mech Eng 294:313–330

    Article  Google Scholar 

  • Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Article  Google Scholar 

  • Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. A practical application to the french panthéon in paris. J Elast 95(1–2):1–30

    Article  Google Scholar 

  • Li D, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46(2):269–287

    Article  Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int J Numer Meth Eng 83:1273–1311

    Article  Google Scholar 

  • Mußchelischwili NI (1971) Einige Grundaufgaben zur mathematischen Elastizitätstheorie. Fachbuchverlag Leipzig

  • Patil SP, Heider Y, Padilla CAH, Cruz-Chú ER, Markert B (2016) A comparative molecular dynamics-phase-field modeling approach to brittle fracture. Comput Methods Appl Mech Eng 312:117–129

    Article  Google Scholar 

  • Ruiz G, Ortiz M, Pandolfi A (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Methods Eng 48(7):963–994

    Article  Google Scholar 

  • Sargado JM, Keilegavlen E, Berre I, Nordbotten JM (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458–489

    Article  Google Scholar 

  • Thomas M, Bilgen C, Weinberg K (2018) Phase-field fracture at finite strains based on modified invariants: a note on its analysis and simulations. Surveys Appl Math Mech 40(3):207–237

    Google Scholar 

  • Verhoosel C, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62

    Article  Google Scholar 

  • Weinberg K, Hesch C (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99(12):906–924

    Article  Google Scholar 

  • Weinberg K, Hesch C (2015) A high-order finite-deformation phase-field approach to fracture. Continuum Mech Thermodyn. https://doi.org/10.1007/s00161-015-0440-7

    Article  Google Scholar 

  • Weinberg K, Khosravani MR (2018) On the tensile resistance of UHPC at impact. Eur Phys J Spec Topics 227(1–2):167–177

    Article  Google Scholar 

  • Yu RC, Ruiz G, Pandolfi A (2004) Numerical investigation on the dynamic behavior of advanced ceramics. Eng Fract Mech 71(4–6):897–911

    Article  Google Scholar 

  • Zhu W, Niu L, Li S, Xu Z (2015) Dynamic Brazilian test of rock under intermediate strain rate: pendulum hammer-driven SHBP test and numerical simulation. Rock Mech Rock Eng 48(5):1867–1881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Bilgen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bilgen, C., Homberger, S. & Weinberg, K. Phase-field fracture simulations of the Brazilian splitting test. Int J Fract 220, 85–98 (2019). https://doi.org/10.1007/s10704-019-00401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00401-w

Keywords

  • Phase-field fracture
  • Brazilian splitting test
  • Crack driving force
  • Crack initiation
  • Analytical solution