Skip to main content
Log in

A Coulomb-based model to simulate concrete cracking using cohesive elements

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents a constitutive model for cohesive elements to simulate crack formation and propagation in mode I and mixed mode in quasi-brittle materials. The model is based on the plasticity theory and features a Coulomb-based yield function, a non-associated flow rule and an implicit stress integration scheme. It also incorporates concepts of nonlinear fracture mechanics to model the softening behavior of the fracture process. Two softening laws are investigated, a bilinear and an exponential law. The results from concrete crack propagation simulations of several classical experiments are presented. Numerical load–CMOD and load–displacement curves showing softening behavior are in very good agreement when compared with experimental data. In summary, the model is able to provide accurate predictions of the whole fracture process on all cases studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Asferg JL (2006) Modeling of concrete fracture applying the extended finite element method, Ph.D. thesis, Technical University of Denmark

  • Barenblatt GI (1962) The mathematical theory of equilibrium of cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  Google Scholar 

  • Barros JA, Figueiras JA (2001) Model for the analysis of steel fibre reinforced concrete slabs on grade. Comput Struct 79(1):97–106 arXiv:1012.5765

    Article  Google Scholar 

  • Basaran C, Nie S (2007) A thermodynamics based damage mechanics model for particulate composites. Int J Solids Struct 44(3):1099–1114

    Article  Google Scholar 

  • Beer G (1985) An isoparametric joint/interface element for finite element analysis. Int J Numer Methods Eng 21(4):585–600

    Article  Google Scholar 

  • Belytschko T, Gracie R, Venturav G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17(4):043001

    Article  Google Scholar 

  • Bocca P, Carpinteri A, Valente S (1990) Size effects in the mixed mode crack propagation: softening and snap-back analysis. Eng Fract Mech 35(1):159–170

    Article  Google Scholar 

  • Caggiano A, Etse G, Martinelli E (2012) Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites. Comput Struct. https://doi.org/10.1016/j.compstruc.2012.01.013

    Article  Google Scholar 

  • Carol I, Prat P, López C (1997) Normal/shear cracking model: application to discrete crack analysis. J Eng Mech 123:765–773

    Article  Google Scholar 

  • Cendón DA, Gálvez JC, Elices M, Planas J (2000) Modelling the fracture of concrete under mixed loading. Int J Fract 103(3):293–310

    Article  Google Scholar 

  • Červenka J, Červenka V, Laserna S (2018) On crack band model in finite element analysis of concrete fracture in engineering practice. Eng Fract Mech 197:27–47

    Article  Google Scholar 

  • Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38(36):6427–6454

    Article  Google Scholar 

  • Corona E, Reedy ED (2011) Calculations of buckle-driven delamination using cohesive elements. Int J Fract 170(2):191–198

    Article  Google Scholar 

  • Cunha VM, Barros JA, Sena-Cruz JM (2011) An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cement Concrete Res 41(1):64–76

    Article  CAS  Google Scholar 

  • Cunha VM, Barros JA, Sena-Cruz JM (2012) A finite element model with discrete embedded elements for fibre reinforced composites. Comput Struct 94–95:22–33

    Article  Google Scholar 

  • Cusatis G, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195:7154–7171

    Article  Google Scholar 

  • Dahlblom O, Ottosen NS (1990) Smeared crack analysis using generalized fictitious crack model. J Eng Mech 116:55–76

    Article  Google Scholar 

  • de Borst R, Nauta P (1985) Non-orthogonal cracks in a smeared finite element model. Eng Comput 2:35–46

    Article  Google Scholar 

  • Donadon MV, Iannucci L (2006) An objectivity algorithm for strain softening material models. In: Proceedings of the 9th international LS-DYNA users conference. (1):43–54

  • Du X, Jin L, Guowei M (2013) Numerical modeling tensile failure behaviour of concrete at mesoscale using extended finite element method. Int J Damage Mech 23:872–898

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  • Fries T-P, Belytschko T (2006) The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int J Numer Methods Eng 68:1358–1385

    Article  Google Scholar 

  • Gaedicke C, Roesler J (2010) Fracture-based method to determine flexural capacity of concrete beams on soil. Road Mater Pavement Des 11(2):361–385

    Article  Google Scholar 

  • Galvez JC, Cendón D, Planas J, Guinea G, Elices M (1998) Fracture of concrete under mixed loading-experimental results and numerical prediction. Fract Mech Concrete Struct 3:729–738

    Google Scholar 

  • Gálvez JC, Červenka J, Cendón DA, Saouma V (2002) A discrete crack approach to normal/shear cracking of concrete. Cement Concrete Res 32(10):1567–1585

    Article  Google Scholar 

  • García-Álvarez VO, Gettu R, Carol I (2012) Analysis of mixed-mode fracture in concrete using interface elements and a cohesive crack model. Sadhana Acad Proc Eng Sci 37(1):187–205

    Google Scholar 

  • Gerstle WH, Xie M (1992) FEM modeling of fictitious crack propagation in concrete. J Eng Mech 118:416–434

    Article  Google Scholar 

  • Ghosh A, Chaudhuri P (2013) Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method. Comput Mater Sci 69:204–215

    Article  Google Scholar 

  • Gupta A, Akbar H (1984) Cracking in reinforced concrete analysis. J Struct Eng 110:1735–1746

    Article  Google Scholar 

  • Gupta P, Pereira J, Kim D-J, Duarte C, Eason T (2012) Analysis of three-dimensional fracture mechanics problems: a non-intrusive approach using a generalized finite element method. Eng Fract Mech 90:41–64

    Article  Google Scholar 

  • Hillerborg A, Modeer M, Peterson P (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6:773–782

    Article  Google Scholar 

  • Hird CC, Kwok CM (1989) Finite element studies of interface behaviour in reinforced embankments of soft ground. Comput Geotech 8(2):111–131

    Article  Google Scholar 

  • Hordijk DA (1992) Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses. vol 37, 1st edn. Heron, Netherlands

  • Jiang H, Meng D (2018) 3D numerical modelling of rock fracture with a hybrid finite and cohesive element method. Eng Fract Mech 199(April):280–293

    Article  Google Scholar 

  • Jin Z-H, Paulino GH, Dodds RH (2003) Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng Fract Mech 70(14):1885–1912

    Article  Google Scholar 

  • Lens LN, Bittencourt E, D’Avila VM (2009) Constitutive models for cohesive zones in mixed-mode fracture of plain concrete. Eng Fract Mech 76(14):2281–2297

    Article  Google Scholar 

  • Li J, Kaliakin VN (1993) Numerical simulation of interfaces in geomaterials: development of new zero-thickness interface elements, Master’s thesis, University of Delaware

  • Mahabadi O, Kaifosh P, Marschall P, Vietor T (2014) Three-dimensional fdem numerical simulation of failure processes observed in opalinus clay laboratory samples. J Rock Mech Geotech Eng 6:591–606

    Article  Google Scholar 

  • Manzoli O, Gamino A, Rodrigues E, Claro G (2012) Modeling of interfaces in two-dimensional problems using solid finite elements with high aspect ratio. Comput Struct 94:70–82

    Article  Google Scholar 

  • Manzoli OL, Maedo MA, Bitencourt LAG, Rodrigues EA (2016) On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials. Eng Fract Mech 153:151–170

    Article  Google Scholar 

  • Mariani S, Perego U (2003) Extended finite element method for quasi-brittle fracture. Int J Numer Methods Eng 58:103–126

    Article  Google Scholar 

  • Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25(5):729–737

    Article  Google Scholar 

  • Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33(20):3327–3342

    Article  Google Scholar 

  • Melenk JM, Babuska L (1996) The partition of unity finite element method: basis theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  Google Scholar 

  • Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  • Morin D, Bourel B, Bennani B, Lauro F, Lesueur D (2013) A new cohesive element for structural bonding modelling under dynamic loading. Int J Impact Eng 53:94–105

    Article  Google Scholar 

  • Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. ACI Proc 64:152–163

  • Nguyen GD (2005) A thermodynamic approach to constitutive modelling of concrete using damage mechanics and plasticity theory, Ph.D. thesis, University of Oxford

  • Nguyen VP (2014) An open source program to generate zero-thickness cohesive interface elements. Adv Eng Softw 74:27–39

    Article  Google Scholar 

  • Nilson A (1968) Nonlinear analysis of reinforced concrete by the finite element method. ACI J 65:757–766

    Google Scholar 

  • Nooru-Mohamed MB (1992) Mixed-mode fracture of concrete: an experimental approach, Ph.D. thesis, Delft University of Technology

  • Pandolfi A, Ortiz M (2002) An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comput 18(2):148–159

    Article  Google Scholar 

  • Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1):279–297

    Article  CAS  Google Scholar 

  • Park K, Paulino GH (2013) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802

    Article  Google Scholar 

  • Park K, Paulino GH, Roesler JR (2008) Determination of the kink point in the bilinear softening model for concrete. Eng Fract Mech 75(13):3806–3818

    Article  Google Scholar 

  • Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908

    Article  CAS  Google Scholar 

  • Paulino GH, Celes W, Espinha R, Zhang ZJ (2008) A general topology-based framework for adaptive insertion of cohesive elements in finite element meshes. Eng Comput 24(1):59–78

    Article  Google Scholar 

  • Penna SS (2011) Formulacao multipotencial para modelos de degradacao elastica, Ph.D. thesis, Federal University of Minas Gerais, Brazil

  • Pituba JJC, Fernandes GR (2011) Anisotropic damage model for concrete. J Eng Mech 137(9):610–624

    Article  Google Scholar 

  • Plesha ME, Ballarini R, Parulekar A (1989) Constitutive model and finite element procedure for dilatant contact problems. J Eng Mech 115(12):2649–2668

    Article  Google Scholar 

  • Roesler JR, Paulino G, Park K, Gaedicke C (2007) Concrete fracture prediction using bilinear softening. Cement Concrete Compos 29(4):300–312

    Article  CAS  Google Scholar 

  • Roy YA, Dodds RH (2001) Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements. Int J Fract 110(1):21–45

    Article  CAS  Google Scholar 

  • Sánchez M, Manzoli O, Guimarães L (2014) Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Comput Geotech 62:27–39

    Article  Google Scholar 

  • Sancho JM, Planas J, Gálvez JC, Reyes E, Cendon DA (2006) An embedded cohesive crack model for finite element analysis of mixed mode fracture of concrete. Fatigue Fract Eng Mater Struct 29:1056–1065

    Article  Google Scholar 

  • Segura J, Carol I (2010) Numerical modelling of pressurized fracture evolution in concrete using zero-thickness interface elements. Eng Fract Mech 77:1386–1399

    Article  Google Scholar 

  • Shi C, van Dam AG, van Mier JGM, Sluys LJ (2000) Crack interaction in concrete. Mater Build Struct EUROMAT 6:125–131

    Google Scholar 

  • Simone A (2007) Partition of unity-based discontinuous finite elements: GFEM, PUFEM, XFEM. Revue Européenne de Génie Civil 11:1045–1068

    Article  Google Scholar 

  • Song SH, Paulino GH, Buttlar WG (2006) Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model. J Eng Mech 132(11):1215–1223

    Article  Google Scholar 

  • Tabiei A, Zhang W (2017) Cohesive element approach for dynamic crack propagation: artificial compliance and mesh dependency. Eng Fract Mech 180:23–42

    Article  Google Scholar 

  • Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  Google Scholar 

  • Winkler B (2011) Traglastuntersuchungen von unbewehrten und bewehrten betonstrukturen auf der grundlage eines objektiven werkstoffgesetzes fur beton, Master’s thesis, University of Innsbruck

  • Winkler B, Hofstetter G, Lehar H (2004) Application of a constitutive model for concrete to the analysis of a precast segmental tunnel lining. Int J Numer Anal Methods Geomech 28:797–819

    Article  Google Scholar 

  • Wittmann FH, Rokugo K, Bruhwiler E, Mihashi H, Simopnin P (1988) Fracture energy and strain softening of concrete as determined by compact tension specimens. Mater Struct 21:21–32

    Article  CAS  Google Scholar 

  • Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73(13):1783–1796

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  Google Scholar 

  • Xu W, Zang M, Sakamoto J (2015) Modeling mixed mode fracture of concrete by using the combined discrete and finite elements method. Int J Comput Methods 13(01):1650007

    Article  Google Scholar 

  • Xu W, Zang M, Sakamoto J (2016) Modeling mixed mode fracture of concrete by using the combined discrete and finite elements method. Int J Comput Methods 13(01):1650007

    Article  Google Scholar 

  • Yang ZJ, Chen JF (2005) Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams. Eng Fract Mech 72:2280–2297

    Article  Google Scholar 

  • Zivaljic N, Nikolic Z, Smoljanovic H (2014) Computational aspects of the combined finite-discrete element method in modelling of plane reinforced concrete structures. Eng Fract Mech 131:669–686

    Article  Google Scholar 

Download references

Acknowledgements

The support from the Brazilian Research Council (CNPq) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Durand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand, R., da Silva, F.H.B.T. A Coulomb-based model to simulate concrete cracking using cohesive elements. Int J Fract 220, 17–43 (2019). https://doi.org/10.1007/s10704-019-00395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00395-5

Keywords

Navigation