Skip to main content

Variational h-adaption method for the phase field approach to fracture

Abstract

The phase field approach to fracture is efficient in simulating crack nucleation and propagation but requires a very fine mesh to resolve the regularization length scale. To alleviate such difficulty we have developed a variational h-adaption method for this approach based on Mosler and Ortiz (Int J Numer Methods Eng 72(5):505–523, 2007, Int J Numer Methods Eng 77(3):437–450, 2009), which consists of a mesh refinement scheme based on edge bisection and a mesh coarsening scheme via node deletion. The main advantages are that a single criterion can be used for the adaption process without any undetermined constant as in a residual-based method and that there is no need to weigh the importance of the two coupled fields, as would be needed for a recovery-based method. We showed examples to demonstrate the efficiency of the proposed method and compared the performance of two bisection operations: simple edge bisection and the modified backward longest edge propagation path scheme. In particular, these two methods lead to condition numbers of the coefficient matrices on the same order of magnitude.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  • Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computat Mech 55(2):383–405

    Article  Google Scholar 

  • Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  Google Scholar 

  • Aranson I, Kalatsky V, Vinokur V (2000) Continuum field description of crack propagation. Phys Rev Lett 85(1):118

    Article  CAS  Google Scholar 

  • Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modelling Simul Mater Sci Eng 17(4):043001

    Article  Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220(1):77–95

    Article  Google Scholar 

  • Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9(3):411–430

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1–3):5–148

    Article  Google Scholar 

  • Brink U, Stein E (1998) A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems. Comput Methods Appl Mech Eng 161(1):77–101

    Article  Google Scholar 

  • Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48(3):980–1012

    Article  Google Scholar 

  • Burke S, Ortner C, Süli E (2013) An adaptive finite element approximation of a generalized Ambrosio–Tortorelli functional. Math Models Methods Appl Sci 23(9):1663–1697

    Article  Google Scholar 

  • Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55(12):2513–2537

    Article  Google Scholar 

  • Delaunay B (1934) Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7(793-800): 1–2

  • Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  Google Scholar 

  • Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng 312(1):276–303

    Article  Google Scholar 

  • Gerasimov T, Stein E, Wriggers P (2015) Constant-free explicit error estimator with sharp upper error bound property for adaptive FE analysis in elasticity and fracture. Int J Numer Methods Eng 101(2):79–126

    Article  Google Scholar 

  • Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495

    Article  Google Scholar 

  • Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93(10):105504

    Article  CAS  Google Scholar 

  • Huang W, Ren Y, Russell RD (1994) Moving mesh methods based on moving mesh partial differential equations. J Comput Phys 113(2):279–290

    Article  Google Scholar 

  • Karma A, Kessler DA, Levine H (2001) Phase-field model of mode iii dynamic fracture. Phys Rev Lett 87(4):045501

    Article  CAS  Google Scholar 

  • Ladevèze P, Pelle JP, Ling FF, Gloyna EF, Hart WH (2005) Mastering calculations in linear and nonlinear mechanics. Springer, New York

    Google Scholar 

  • Landau LD, Lifshitz E (1980) Statistical physics. Pergamon Press, Oxford

    Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  Google Scholar 

  • Mosler J, Ortiz M (2007) Variational \(h\)-adaption in finite deformation elasticity and plasticity. Int J Numer Methods Eng 72(5):505–523

    Article  Google Scholar 

  • Mosler J, Ortiz M (2009) An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains. Int J Numer Methods Eng 77(3):437–450

    Article  Google Scholar 

  • Ohnimus S, Stein E, Walhorn E (2001) Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. Int J Numer Methods Eng 52(7):727–746

    Article  Google Scholar 

  • Patil RU, Mishra BK, Singh IV (2018) An adaptive multiscale phase field method for brittle fracture. Comput Methods Appl Mech Eng 329:254–288 (Supplement C)

    Article  Google Scholar 

  • Rangarajan R, Chiaramonte MM, Hunsweck MJ, Shen Y, Lew AJ (2015) Simulating curvilinear crack propagation in two dimensions with universal meshes. Int J Numer Methods Eng 102(3–4):632–670

    Article  Google Scholar 

  • Rivara MC (1991) Local modification of meshes for adaptive and/or multigrid finite-element methods. J Comput Appl Math 36(1):79–89

    Article  Google Scholar 

  • Rivara MC (1997) New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. Int J Numer Methods Eng 40(18):3313–3324

    Article  Google Scholar 

  • Rivara MC, Levin C (1992) A 3-D refinement algorithm suitable for adaptive and multi-grid techniques. Commun Appl Numer Methods 8(5):281–290

    Article  Google Scholar 

  • Shen Y, Wu C, Wan Y (2017) Universal meshes for a branched crack. Finite Elem Anal Des 129:53–62

    Article  Google Scholar 

  • Zhang F, Huang W, Li X, Zhang S (2018) Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton’s iteration. J Comput Phys 356:127–149

    Article  CAS  Google Scholar 

  • Zienkiewicz O, Boroomand B, Zhu J (1999) Recovery procedures in error estimation and adaptivity part I: adaptivity in linear problems. Comput Methods Appl Mech Eng 176(1):111–125

    Article  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineerng analysis. Int J Numer Methods Eng 24(2):337–357

    Article  Google Scholar 

Download references

Acknowledgements

YS acknowledges the financial support by the Young Thousand Talent Program of China. Also, Professor Chao Yang from Sun Yat-sen University is gratefully acknowledged for providing practical suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxing Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manufactured solution

The manufactured solution

The manufactured solution used in Sect. 4.3 is given in this appendix. Let the corresponding sharp crack be \(\varGamma _s=[0,0.5]\times \{0\}\) and define \(\rho ({\varvec{x}}):= {{\,\mathrm{dist}\,}}({\varvec{x}},\varGamma _s)\). Then the solution for d is constructed to be

$$\begin{aligned} d({\varvec{x}}):= {\left\{ \begin{array}{ll} 1, &{} \text {if } \rho ({\varvec{x}}) \le \alpha _{\ell }, \\ \exp [-(\rho (x)-\alpha _{\ell })/\ell ], &{} \text {otherwise.} \end{array}\right. } \end{aligned}$$

Here \(\ell = 0.06\) and \(\alpha _\ell = 0.005\). And the solution for \({\varvec{u}}\) is

$$\begin{aligned} {\varvec{u}}({\varvec{x}}) := {\left\{ \begin{array}{ll} [\rho ({\varvec{x}})/\alpha _{\ell }]{\varvec{u}}^I({\varvec{x}}), &{} \text {if } \rho (x) \le \alpha _{\ell }, \\ {\varvec{u}}^I(x), &{} \text {otherwise}, \end{array}\right. } \end{aligned}$$

where the mode I displacements fields are

$$\begin{aligned} u_x^I= & {} \sqrt{\frac{r}{2\pi }}\frac{K_{I}}{2\mu }\cos \left( \frac{\theta }{2}\right) (\kappa -\cos \theta ),\\ u_y^I= & {} \sqrt{\frac{r}{2\pi }}\frac{K_{I}}{2\mu }\sin \left( \frac{\theta }{2}\right) (\kappa -\cos \theta ), \end{aligned}$$

with

$$\begin{aligned} r=\sqrt{\left( x-0.5\right) ^2+y^2},\quad \theta =\arctan \frac{y}{x-0.5}. \end{aligned}$$

Here the mode-I stress intensity factor \(K_I\) is taken to be unity and \(\kappa = 3-4\nu \) for the current case of plane strain.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lai, W. & Shen, Y. Variational h-adaption method for the phase field approach to fracture. Int J Fract 217, 83–103 (2019). https://doi.org/10.1007/s10704-019-00372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00372-y

Keywords