Skip to main content
Log in

A super-convergent staggered algorithm for the simulation of hydraulic fracturing treatments

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, a super-convergent algorithm is presented for the simulation of hydraulic fracturing process in impervious domains using the extended finite element framework. The hydro-fracture inflow is modeled based on the Darcy law, in which the fracture permeability is incorporated by taking advantages from the well-known cubic law. The hydro-mechanical coupling between the fracturing fluid flow and the surrounding bulk is carried out by employing a sequential iterative procedure known as the staggered Newton algorithm. The convergence rate of the existing staggered solutions in the literature is examined, and an alternative super-convergent approach is proposed. Finally, through several numerical simulations the sanity of the developed framework is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The medium mesh was formerly used in the first example.

References

  • Barani O, Khoei A, Mofid M (2011) Modeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fracture. Int J Fract 167:15–31

    Article  Google Scholar 

  • Beach A (1980) Numerical models of hydraulic fracturing and the interpretation of syntectonic veins. J Struct Geol 2:425–438

    Article  Google Scholar 

  • Boone TJ, Ingraffea AR (1990) A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int J Numer Anal Methods Geomech 14:27–47

    Article  Google Scholar 

  • Carter R (1957) Derivation of the general equation for estimating the extent of the fractured area. Appendix I of Optimum Fluid Characteristics for Fracture Extension, Drilling and Production Practice, GC Howard and CR Fast, New York, New York, USA, American Petroleum Institute, pp 261–269

  • Chen Y, Lian H, Liang W, Yang J, Nguyen VP, Bordas SP (2019) The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses. Int J Rock Mech Min Sci 113:59–71

    Article  Google Scholar 

  • Daneshy A (1978) Numerical solution of sand transport in hydraulic fracturing. J Pet Technol 30:132–140

    Article  Google Scholar 

  • Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson J, Thiercelin M, Cheng A (1994) The crack tip region in hydraulic fracturing, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, pp 39-48

  • Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45

    Article  Google Scholar 

  • Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182:499–515

    Article  Google Scholar 

  • Geertsma J, De Klerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Pet Technol 21:1571–1581

    Article  Google Scholar 

  • Gordeliy E, Peirce A (2013) Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput Methods Appl Mech Eng 253:305–322

    Article  Google Scholar 

  • Gordeliy E, Peirce A (2015) Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng 283:474–502

    Article  Google Scholar 

  • Haddad M, Sepehrnoori K (2016) XFEM-based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations. Rock Mech Rock Eng 49:4731–4748

    Article  Google Scholar 

  • Khoei AR, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically-driven cohesive fracture propagation in impermeable media with frictional natural faults; Numerical and experimental investigations. Int J Numer Methods Eng 104:439–468

    Article  Google Scholar 

  • Khoei AR, Vahab M, Haghighat E, Moallemi S (2014) A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique. Int J Fract 188:79–108

    Article  Google Scholar 

  • Khoei AR, Vahab M, Hirmand M (2016) Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. Int J Fract 197:1–24

    Article  Google Scholar 

  • Khoei AR, Vahab M, Hirmand M (2018) An enriched-FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media. Comput Methods Appl Mech Eng 331:197–231

    Article  Google Scholar 

  • Khristianovic SA, Zheltov YP (1955) Formation of vertical fractures by means of highly viscous liquid. In: 4th world petroleum congress. World Petroleum Congress

  • Lee S, Mikelić A, Wheeler MF, Wick T (2016) Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput Methods Appl Mech Eng 312:509–541

    Article  Google Scholar 

  • Lee S, Wheeler MF, Wick T (2017) Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches. J Comput Appl Math 314:40–60

    Article  Google Scholar 

  • Lewis R, Schrefler B, Simoni L (1991) Coupling versus uncoupling in soil consolidation. Int J Numer Anal Methods Geomech 15:533–548

    Article  Google Scholar 

  • Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81:805–812

    Article  Google Scholar 

  • Milanese E, Rizzato P, Pesavento F, Secchi S, Schrefler B (2016) An explanation for the intermittent crack tip advancement and pressure fluctuations in hydraulic fracturing. Hydraul Fract J 3:30–43

    Google Scholar 

  • Mohammadnejad T, Khoei AR (2013) An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Methods Anal Des 73:77–95

    Article  Google Scholar 

  • Nguyen O, Repetto EA, Ortiz M, Radovitzky RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110:351–369

    Article  Google Scholar 

  • Nguyen VP, Lian H, Rabczuk T, Bordas S (2017) Modelling hydraulic fractures in porous media using flow cohesive interface elements. Eng Geol 225:68–82

    Article  Google Scholar 

  • Nick H, Matthäi S (2011) Comparison of three FE-FV numerical schemes for single-and two-phase flow simulation of fractured porous media. Transp Porous Med 90:421–444

    Article  Google Scholar 

  • Papanastasiou P (1999) An efficient algorithm for propagating fluid-driven fractures. Comput Mech 24:258–267

    Article  Google Scholar 

  • Prevost JH (1997) Partitioned solution procedure for simultaneous integration of coupled-field problems. Commun Numer Meth En 13:239–247

    Article  Google Scholar 

  • Réthoré J, de Borst R, Abellan MA (2007) A two-scale approach for fluid flow in fractured porous media. Int J Numer Methods Eng 71:780–800

    Article  Google Scholar 

  • Samimi S, Pak A (2016) A fully coupled element-free Galerkin model for hydro-mechanical analysis of advancement of fluid-driven fractures in porous media. Int J Numer Anal Methods Geomech 40:2178–2206

    Article  Google Scholar 

  • Schrefler B, Simoni L, Turska E (1997) Standard staggered and staggered Newton schemes in thermo-hydro-mechanical problems. Comput Methods Appl Mech Eng 144:93–109

    Article  Google Scholar 

  • Schrefler B, Secchi S, Simoni L (2006) On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput Methods Appl Mech Eng 195:444–461

    Article  Google Scholar 

  • Secchi S, Schrefler B (2012) A method for 3-D hydraulic fracturing simulation. Int J Fract 178:245–258

    Article  Google Scholar 

  • Segura J, Carol I (2008) Coupled HM analysis using zero-thickness interface elements with double nodes. Part I: Theoretical model. Int J Numer Anal Methods Geomech 32:2083–2101

    Article  Google Scholar 

  • Sheng M, Li G, Sutula D, Tian S, Bordas SP (2018) XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations. J Petrol Sci Eng 162:801–812

    Article  Google Scholar 

  • Simoni L, Schrefler B (1991) A staggered finite-element solution for water and gas flow in deforming porous media. Int J Numer Method Biomed Eng 7:213–223

    Google Scholar 

  • Simoni L, Schrefler BA (2014) Multi field simulation of fracture. In Advances in Applied Mechanics, Elsevier, pp 367–519

  • Saad Y (2003) Iterative methods for sparse linear systems (vol 82). SIAM

  • Spence D, Sharp P (1985) Self-similar solutions for elastohydrodynamic cavity flow. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. The Royal Society, pp 289–313

  • Sutula D, Kerfriden P, Van Dam T, Bordas SP (2018a) Minimum energy multiple crack propagation. Part I: Theory and state of the art review. Eng Fract Mech 191:205–224

    Article  Google Scholar 

  • Sutula D, Kerfriden P, Van Dam T, Bordas SP (2018b) Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM. Eng Fract Mech 191:225–256

    Article  Google Scholar 

  • Sutula D, Kerfriden P, Van Dam T, Bordas SP (2018c) Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Eng Fract Mech 191:257–276

    Article  Google Scholar 

  • Taleghani AD, Olson JE (2011) Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE J 16:575–581

    Article  Google Scholar 

  • Vahab M, Khalili N (2017) Numerical investigation of the flow regimes through hydraulic fractures using the X-FEM technique. Eng Fract Mech 169:146–162

    Article  Google Scholar 

  • Vahab M, Khalili N (2018) X-FEM modeling of multizone hydraulic fracturing treatments within saturated porous media. Rockmech Rock Eng 51:1–21

    Article  Google Scholar 

  • Wang J, Zhang Y, Liu J, Zhang B (2010) Numerical simulation of geofluid focusing and penetration due to hydraulic fracture. J Geochem Explor 106:211–218

    Article  Google Scholar 

  • Wells G, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50:2667–2682

    Article  Google Scholar 

  • Wilson ZA, Landis CM (2016) Phase-field modeling of hydraulic fracture. J Mech Phys Solids 96:264–290

    Article  Google Scholar 

  • Witherspoon PA, Wang J, Iwai K, Gale J (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Article  Google Scholar 

  • Xia L, Yvonnet J, Ghabezloo S (2017) Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media. Eng Fract Mech 186:158–180

    Article  Google Scholar 

  • Zienkiewicz O, Chan A (1989) Coupled problems and their numerical solution, advances in computational nonlinear mechanics. Springer, Berlin, pp 139–176

    Book  Google Scholar 

  • Zienkiewicz O, Paul D, Chan A (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26:1039–1055

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to appreciate Professor Amir R Khoei (Sharif University of Technology), and Dr. Mohammad R Hirmand (University of Waterloo) for their valuable communications regarding the partitioned solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vahab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahab, M., Khalili, N. A super-convergent staggered algorithm for the simulation of hydraulic fracturing treatments. Int J Fract 217, 49–64 (2019). https://doi.org/10.1007/s10704-019-00362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00362-0

Keywords

Navigation