Appraisement of planar, bending and twisting cracks in 3D with isotropic and orthotropic damage models

Abstract

This paper discusses the modeling of cracking in quasi-brittle materials using isotropic and orthotropic damage constitutive laws. A mixed strain/displacement finite element formulation is used, taking advantage of its enhanced precision and its enforced interelemental strain continuity. On the one hand, this formulation avoids the spurious mesh dependency of the computed solution associated to standard elements and does not require the use of tracking techniques. On the other hand, it greatly alleviates the spurious stress locking associated to the use of orthotropic models on standard finite elements. The performance of several isotropic and orthotropic damage constitutive laws is assessed through an extensive comparison with analytical solutions, numerical tests and experimental evidence reported in the literature. The behavior of the different damage models in terms of crack surface, collapse mechanism and force displacement curves is investigated performing 3D analyses in several conditions including Mode I, Mixed Mode and Mode III fracture. When performing the appraisement of planar, bending and twisting cracks, the enhanced accuracy of the mixed formulation allows for a distinct assessment of the several damage models considered. Aspects related to the behavior of damage models, such as the influence of Poisson’s ratio, the shape of the damage surface and the adoption of isotropic and orthotropic models are investigated and noteworthy conclusions are drawn.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

References

  1. Areias P, Rabczuk T, César de Sá J (2016) A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Comput Mech 58:1003–1018

    Article  Google Scholar 

  2. Arrea M, Ingraffea A (1982) Mixed-mode crack propagation in mortar and concrete. Report No. 81-13, Department of Structural Engineering, Cornell University, Ithaca, NY

  3. Bazant Z (1983) Comment on orthotropic models for concrete and geomaterials. J Eng Mech 3(109):849–865

    Article  Google Scholar 

  4. Bazant Z (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech 4(110):518–535

    Article  Google Scholar 

  5. Benedetti L, Cervera M, Chiumenti M (2017) 3D modelling of twisting cracks under bending and torsion skew notched beams. Eng Fract Mech

  6. Carol I, Prat P (1990) A statically constrained microplane model for the smeared analysis of concrete cracking. Comput Aided Anal Des Concr Struct 2:919–930

    Google Scholar 

  7. Carol I, Rizzi E, Willam K (2001) On the formulation of anisotropic elastic degradation. I: theory based on pseudo-logarithmic damage tensor rate; II: generalized pseudo-Rankine model for tensile damage. Int J Solids Struct 38(4):491–546

    Article  Google Scholar 

  8. Cervera M (2008) A smeared-embedded mesh-corrected damage model for tensile cracking. Int J Numer Methods Eng, pp 1930-1954

  9. Cervera M (2008) An orthotropic mesh corrected crack model. Comput Methods Appl Mech Eng 197(17–18):1603–1619

    Article  Google Scholar 

  10. Cervera M, Chiumenti M (2006) Smeared crack approach: back to the original track. Int J Numer Anal Methods Geomech 30:1173–1199

    Article  Google Scholar 

  11. Cervera M, Tesei C (2017) An energy-equivalent d\(+\)/d\(-\) damage model with enhanced microcrack closure-reopening capabilities for cohesive-frictional materials. Materials 10(4):433

    Article  Google Scholar 

  12. Cervera M, Hinton E, Hassan O (1987) Nonlinear analysis of reinforced concrete plate and shell structures using 20-noded isoparametric brick elements. Comput Struct 25(6):845–869

    Article  Google Scholar 

  13. Cervera M, Chiumenti M, Codina R (2010a) Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: formulation. Comput Methods Appl Mech Eng 199(37–40):2559–2570

  14. Cervera M, Chiumenti M, Codina R (2010b) Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain localization. Comput Methods Appl Mech Eng 199(37–40):2571–2589

  15. Cervera M, Chiumenti M, Codina R (2011) Mesh objective modelling of cracks using continuous linear strain and displacement interpolations. Int J Numer Meth Eng 87(10):962–987

    Article  Google Scholar 

  16. Cervera M, Chiumenti M, Benedetti L, Codina R (2015) Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity. Comput Methods Appl Mech Eng 285:752–775

    Article  Google Scholar 

  17. Cervera M, Barbat G, Chiumenti M (2017) Finite element modelling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy. Comput Mech 60(5):767–796

    Article  Google Scholar 

  18. Cervera M, Agelet de Saracibar C, Chiumenti M (2002) COMET: Coupled mechanical and thermal analysis. data input manuel, version 5.0, technical report IT-308. Available from http://www.cimne.upc.edu

  19. Cope R, Rao P, Clark L, Norris P (1980) Modelling of reinforced concrete behavior for finite element analysis of bridge slabs. Numer Methods Nonlinear Probl 1:457–470

    Google Scholar 

  20. Courdebois J, Sidoroff F (1982) Endommagement anisotrope en elasticité et plasticité. J Mech Theor Appl, vol Special Volume, pp 45–60

  21. de Borst R, Nauta P (1985) Non-orthogonal cracks in a smeared finite element model. Eng Comput 2:35–46

    Article  Google Scholar 

  22. Dejong M, Hendriks M, Rots J (2008) Sequentially linear analysis of fracture under non-proportional loading. Eng Fract Mech 75:5042–5056

    Article  Google Scholar 

  23. Di Prisco M, Ferrara L, Meftah F, Pamin J, De Borst R, Mazars J, Reynouard J (2000) Mixed mode fracture in plain and reinforcement concrete: some results on benchmark tests. Int J Fract 103:127–148

    Article  Google Scholar 

  24. Faria R, Oliver J, Cervera M (1998) A strain-based plastic viscous-damage model for massive concrete structures. Int J Solids Struct 35(14):1533–1558

    Article  Google Scholar 

  25. Feenstra P (1993) Computational aspects of biaxial stress in plain and reinforced concrete. Ph.D. Thesis, Delft University of Technology

  26. Feenstra P, de Borst R (1995) A plasticity model and algorithm for mode-I cracking in concrete. Int J Numer Methods Eng 38(5):2509–2529

    Article  Google Scholar 

  27. Galvez J, Cendón D (2002) Simulación de la fractura del hormigón en modo mixto. Rev Int Met Num Calc Dis Ing 18(1):31–58

    Google Scholar 

  28. Gerstle W, Xie M (1992) FEM modeling of fictitious crack propagation in concrete. J Eng Mech 118(2):416–434

    Article  Google Scholar 

  29. GiD: the Personal Pre and Post-Processor (2002) CIMNE, Technical University of Catalonia, p. http://gid.cimne.upc.ed

  30. Hofstetter G, Meschke G (2011) Numerical modeling of concrete cracking, vol 532. Springer, Berlin

    Google Scholar 

  31. Jirasek M, Zimmermann T (1998) Analysis of rotating crack model. J Eng Mech 124(8):842–851

    Article  Google Scholar 

  32. Litton RA (1976) Contribution to the analysis of concrete structures under cyclic loading. Ph.D. Thesis, University of California, Berkeley

  33. Nooru-Mohamed M (1992) Mixed-mode fracture of concrete: an experimental approach. Ph.D. Thesis, Delft University of Technology

  34. Oliver J, Huespe A, Samaniego E, Chaves E (2004) Continuum approach to the numerical simulation of material failure in concrete. Int J Numer Anal Methods Geomech 28:609–632

    Article  Google Scholar 

  35. Oliver J, Cervera M, Oller S, Lubliner J (1990) Isotropic damage models and smeared crack analysis of concrete. In: II international conference on computer aided analysis and design of concrete

  36. Pivonka P, Ozbolt J, Lackner R, Mang H (2004) Comparative studies of 3D-constitutive models for concrete: application to mixed-mode fracture. Int J Numer Methods Eng 60:549–570

    Article  Google Scholar 

  37. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343

    Article  Google Scholar 

  38. Rashid Y (1968) Ultimate strength analysis of prestressed concrete pressure vessels. Nucl Eng Des 7(4):334–344

    Article  Google Scholar 

  39. Rots J (1988) Computational modeling of concrete fracture. Ph.D. Thesis, Delft University of Technology

  40. Saleh A, Aliabadi M (1995) Crack growth analysis in concrete using boundary element method. Eng Fract Mech 51(4):533–545

    Article  Google Scholar 

  41. Saloustros S, Pela L, Cervera M (2015) A crack-tracking technique for localized cohesive-frictional damage. Eng Fract Mech 150:96–114

    Article  Google Scholar 

  42. Simo J, Ju J (1987) Strain- and stress-based continuum damage models. I: formulation; II compatational aspects. Int J Solids Struct 23:821–869

    Article  Google Scholar 

  43. Slobbe A, Hendriks M, Rots J (2014) Smoothing the propagation of smeared cracks. Eng Fract Mech 132:147–168

    Article  Google Scholar 

  44. Voyiadjis G, Taqieddin Z, Kattan P (2008) Anisotropic damage-plasticity model for concrete. Int J Plast 24:1946–1965

    Article  Google Scholar 

  45. Weihe S, Kroplin B (1995) Fictitious crack models: a classification approach. Aedificatio Publishers, Freiburg

    Google Scholar 

  46. Weihe S, Kroplin B, De Borst R (1998) Classification of smeared crack modles based on material and structural properties. Int J Solids Struct 12:1289–1308

    Article  Google Scholar 

  47. Willam K, Pramono E, Sture S (1987) Fundamental issues of smeared crack models. In: SEM/RILEM, international conference on fracture of concrete and rock, pp 142–153

  48. Wu J-Y, Cervera M (2017) Strain localization analysis of elastic-damaging frictional-cohesive materials: analytical results and numerical verification. Materials 10(4)

  49. Wu J-Y, Xu S-L (2011) An augmented multicrack elastoplastic damage model for tensile cracking. Int J Solids Struct 48:2511–2528

    Article  Google Scholar 

  50. Zienkiewicz O, Taylor R, Zhu Z (1989) The finite element method, vol 1, 7th edn. Elsevier, Butterworth-Heinemann

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Cervera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barbat, G.B., Cervera, M. & Chiumenti, M. Appraisement of planar, bending and twisting cracks in 3D with isotropic and orthotropic damage models. Int J Fract 210, 45–79 (2018). https://doi.org/10.1007/s10704-018-0261-3

Download citation

Keywords

  • Damage
  • Isotropy
  • Orthotropy
  • Constitutive law
  • Cracking
  • Mixed finite elements
  • Strain localization