Skip to main content

Advertisement

Log in

On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The effect of transformation-induced plasticity (TRIP) on the fracture response of polycrystalline shape memory alloys is analyzed in the prototype infinite center-cracked plate subjected to thermal cycling under constant mechanical loading in plain strain. Finite element calculations are carried out to determine the mechanical fields and the crack-tip energy release rate using the virtual crack closure technique. Similar to phase transformation, TRIP is found to affect both the driving force for crack growth and the crack growth kinetics by promoting crack advance when occurring in a fan in front of the crack tip and providing a “shielding” effect when occurring behind that fan. Accumulation of TRIP strains over the cycles results in higher energy release rates from one cycle to another and may result in crack growth if the crack-tip energy release rate reaches a material “specific” critical value after a sufficient number of cycles. During crack advance, the shielding effect of the TRIP strains left in the wake of the growing crack dominates and therefore TRIP is found to both promote the initiation of crack growth and extend the stable crack growth regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abaqus (2015) Analysis user’s, manual. Dassault Systèmes of America Corp, Woodlands Hills

  • Ardakani S, Hatefi AH, Mohammadi S (2015) Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method. Smart Mater Struct 24:045031

    Article  Google Scholar 

  • Baxevanis T, Lagoudas DC (2012) A mode I fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175(2):151–166

    Article  Google Scholar 

  • Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane-strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012

    Article  Google Scholar 

  • Baxevanis T, Landis CM, Lagoudas DC (2013a) On the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81(4):041005

    Article  Google Scholar 

  • Baxevanis T, Parrinello AF, Lagoudas DC (2013b) On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys. Int J Plast 50:158–169

    Article  Google Scholar 

  • Baxevanis T, Landis CM, Lagoudas DC (2014) On the effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81(10):101006

    Article  Google Scholar 

  • Baxevanis T, Parrinello AF, Lagoudas DC (2016) On the driving force for crack growth during thermal actuation of shape memory alloys. J Mech Phys Solids 89:255–271

    Article  Google Scholar 

  • Birman V (1998) On mode I fracture of shape memory alloy plates. Smart Mater Struct 7:433–437

    Article  Google Scholar 

  • Bo Z, Lagoudas DC (1999a) Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle. Int J Eng Sci 37:1141–1173

    Article  Google Scholar 

  • Bo Z, Lagoudas DC (1999b) Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect. Int J Eng Sci 37:1175–1203

    Article  Google Scholar 

  • Bo Z, Lagoudas DC (1999c) Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops. Int J Eng Sci 37:1205–1249

    Article  Google Scholar 

  • Bo Z, Lagoudas DC (1999d) Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations. Int J Eng Sci 37:1089–1140

    Article  Google Scholar 

  • Boyd J, Lagoudas DC (1996) A thermodynamical constitutive model for shape memory materials, Part I: the monolithic shape memory alloy. Int J Plast 12(6):805–842

    Article  Google Scholar 

  • Budiansky B, Hutchinson JW, Lambropoulos JC (1983) Continuum theory of dilatant transformation toughening in ceramics. Int J Solids Struct 19(4):337–355

    Article  Google Scholar 

  • Cherkaoui M, Berveiller M, Sabar H (1998) Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals. Int J Plast 14:597–626

    Article  Google Scholar 

  • Creuziger A, Bartol LJ, Gall K, Crone W (2008) Fracture in single crystal NiTi. J Mech Phys Solids 56:2896–2905

    Article  Google Scholar 

  • Daly S, Miller A, Ravichandar G, Bhattacharya K (2007) An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater 55:6322–6330

    Article  Google Scholar 

  • Daymond MR, Young ML, Almer JD, Dunand DC (2007) Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi. Acta Mater 55:3929–3942

    Article  Google Scholar 

  • Desindes S, Daly S (2010) The small-scale yielding of shape memory alloys under mode III fracture. Int J Solids Struct 47:730–737

    Article  Google Scholar 

  • Entchev P, Lagoudas DC (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys, Part I: constitutive model for fully dense SMAs. Mech Mater 36:865–892

    Article  Google Scholar 

  • Fischer F, Reisner G, Werner K, Tanaka E, Cailletaud T, Antretter G (2000) A new view on transformation induced plasticity (TRIP). Int J Plast 16:723–748

    Article  Google Scholar 

  • Freed Y, Banks-Sills L (2007) Crack growth resistance of shape memory alloys by means of a cohesive zone model. J Mech Phys Solids 55:2157–2180

    Article  Google Scholar 

  • Gall K, Yang N, Sehitoglu H, Chumlyakov Y (2001) Fracture of precipitated NiTi shape memory alloys. Int J Fract 109:189–207

    Article  Google Scholar 

  • Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57:1015–1025

    Article  Google Scholar 

  • Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. In: Proceedings of the institution of mechanical engineers. Part G: journal of aerospace engineering, SAGE pp 535–552

  • Hazar S, Zaki W, Moumni Z, Anlas G (2015) Modeling of steady-state crack growth in shape memory alloys using a stationary method. Int J Plast 67:26–39

    Article  Google Scholar 

  • Iliopoulos AP, Steuben JC, Kirk T, Baxevanis T, Michopoulos JG, Lagoudas DC, Thermomechanical failure response of notched NiTi coupons. Int J Solids Struct–In Press

  • Irwin GR (1958) Handbuch der Physik VI. Spinger, Berlin, pp 558–590 Ch. Fracture I

    Google Scholar 

  • Jape S, Baxevanis T, Lagoudas DC (2014) Stable crack growth during actuation in shape memory alloys. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring. International Society for Optics and Photonics pp 905802(1–9)

  • Jape S, Baxevanis T, Lagoudas DC (2016) Stable crack growth during thermal actuation of shape memory alloys. Shape Memory Superelast 2:104113

    Article  Google Scholar 

  • Jape S, Baxevanis T, Parrinello AF, Lagoudas DC (2015) On the fracture response of shape memory alloy actuators. In: Proceedings of the TMS middle east: Mediterranean materials congress on energy and infrastructure systems (MEMA 2015). Wiley, pp 165–180

  • Krueger R (2004) Virtual crack closure technique: History, approach, and applications. Appl Mech Rev 57(2):109–143

    Article  Google Scholar 

  • Kumar PK, Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, New-York, pp 1–51 Ch. Introduction to Shape Memory Alloys

    Book  Google Scholar 

  • Lambropoulos JC (1986) Shear, shape and orientation effects in transformation toughening. Int J Solids Struct 22:1083–1106

    Article  Google Scholar 

  • Lexcellent C, Laydi MR, Taillebot V (2011) Analytical prediction of the phase transformation onset zone at a crack tip of a shape memory alloy exhibiting asymmetry between tension and compression. Int J Fract 169(1):1–13

    Article  Google Scholar 

  • Liu Y, McCormick P (1994) Thermodynamic analysis of the martensitic transformation in Ti-Ni-I, effect of heat treatment on transformation behaviour. Acta Metall Mater 42:2401–2406

    Article  Google Scholar 

  • Maletta C, Furgiuele F (2010) Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel-titanium alloys. Acta Mater 58:92–101

    Article  Google Scholar 

  • Maletta C, Furgiuele F (2011) Fracture control parameters for NiTi based shape memory alloys. Int J Solids Struct 48:1658–1664

    Article  Google Scholar 

  • Maletta C, Sgambitterra E, Fabrizio N (2016) Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Sci Rep 6:1–11

    Article  Google Scholar 

  • Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens Actuators, A 158(1):149–160

    Article  Google Scholar 

  • Perkins J, Bobowiec P (1986) Microstructural effects of martensitic transformation cycling of a Cu–Zn–Al alloy: vestigial structures in the parent phase. Metall Trans A 17A:195–203

    Article  Google Scholar 

  • Robertson SW, Metha A, Pelton AR, Ritchie RO (2007) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray micro-diffraction analysis. Acta Mater 55:6198–6207

    Article  Google Scholar 

  • Rybicki E, Kanninen M (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938

    Article  Google Scholar 

  • Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot 34(4):285–294

    Article  Google Scholar 

  • Stam G, van der Giessen E (1995) Effect of reversible phase transformations on crack growth. Mech Mater 21:51–71

    Article  Google Scholar 

  • Ungár T, Frenzel J, Gollerthan S, Ribárik G, Balogh L, Eggeler G, (2017) On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys. J Mater Res 1–10. doi:10.1557/jmr.2017.267

  • Wang XM, Wang YF, Baruj A, Eggeler G, Yue ZF (2005) On the formation of martensite in front of cracks in pseudoelastic shape memory alloys. Mater Sci Eng A 394:393–398

  • Xie D, Biggers S (2006) Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem Anal Des 42:977–984

    Article  Google Scholar 

  • Yan W, Mai Y (2006) IUTAM symposium on mechanics and reliability of actuating materials. Springer, Berlin, pp 217–226 Ch. Theoretical Consideration on the Fracture of Shape Memory Alloys

    Book  Google Scholar 

  • Yi S, Gao S (2000) Fracture toughening mechanism of shape memory alloys due to martensite transformation. Int J Solids Struct 37:5315–5327

    Article  Google Scholar 

  • Yi S, Gao S, Shen L (2001) Fracture toughening mechanism of shape memory alloys under mixed-mode loading due to martensite transformation. Int J Solids Struct 38:4463–4476

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Grant Number FA9550-15-1-0287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Baxevanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jape, S., Baxevanis, T. & Lagoudas, D.C. On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity. Int J Fract 209, 117–130 (2018). https://doi.org/10.1007/s10704-017-0245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0245-8

Keywords

Navigation