Aravas N (1987) On the numerical integration of a class of pressure dependent plasticity models. Int J Numer Methods 24:1395–1416. doi:10.1002/nme.1620240713
Article
Google Scholar
Bai Y, Wierzbicki T (2010) Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract 161(1):1–20. doi:10.1007/s10704-009-9422-8
Article
Google Scholar
Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98. doi:10.1016/j.ijmecsci.2004.02.006
Article
Google Scholar
Barsoum I, Faleskog J (2007) Rupture mechanisms in combined tension and shear-micromechanics. Int J Solids Struct 44(17):5481–5498. doi:10.1016/j.ijsolstr.2007.01.010
Article
Google Scholar
Barsoum I, Faleskog J (2011) Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence. Int J Solids Struct 48(6):925–938. doi:10.1016/j.ijsolstr.2010.11.028
Article
Google Scholar
Basu S, Benzerga AA (2015) On the path-dependence of the fracture locus in ductile materials: experiments. Int J Solids Struct 71:79–90. doi:10.1016/j.ijsolstr.2015.06.003
Article
Google Scholar
Benallal A (2017) Constitutive equations for porous solids with matrix behaviour dependent on the second and third stress invariants. Int J Impact Eng. doi:10.1016/j.ijimpeng.2017.05.004
Benallal A, Comi C (1996) Localization analysis via a geometrical method. Int J Solids Struct 33(1):99–119. doi:10.1016/0020-7683(95)00018-6
Article
Google Scholar
Benzerga A, Surovik D, Keralavarma S (2012) On the path-dependence of the fracture locus in ductile materials analysis. Int J Plast 37:157–170. doi:10.1016/j.ijplas.2012.05.003
Article
Google Scholar
Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38(46–47):8259–8284. doi:10.1016/S0020-7683(01)00167-6
Article
Google Scholar
Bryhni Dæhli LE, Børvik T, Hopperstad OS (2016) Influence of loading path on ductile fracture of tensile specimens made from aluminium alloys. Int J Solids Struct 88–89:17–34. doi:10.1016/j.ijsolstr.2016.03.028
Article
Google Scholar
Chalal H, Abed-Meraim F (2015) Hardening effects on strain localization predictions in porous ductile materials using the bifurcation approach. Mech Mater 91(Part 1):152–166. doi:10.1016/j.mechmat.2015.07.012
Article
Google Scholar
Chocron S, Erice B, Anderson CE (2011) A new plasticity and failure model for ballistic application. Int J Impact Eng 38(8–9):755–764. doi:10.1016/j.ijimpeng.2011.03.006
Article
Google Scholar
Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(3):249. doi:10.1115/1.3224807
Article
Google Scholar
Desmorat R, Kane A, Seyedi M, Sermage J (2007) Two scale damage model and related numerical issues for thermo-mechanical High Cycle Fatigue. Eur J Mech A/Solids 26(6):909–935. doi:10.1016/j.euromechsol.2007.01.002
Article
Google Scholar
Di Y, Lixun C, Chen B (2016) A new fracture criterion for ductile materials based on a finite element aided testing method. Mater Sci Eng A. doi:10.1016/j.msea.2016.06.076
Dunand M, Mohr D (2014) Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities. J Mech Phys Solids 66(1):133–153. doi:10.1016/j.jmps.2014.01.008
Article
Google Scholar
Faleskog J, Gao X, Shih CF (1998) Cell model for nonlinear fracture analysis—I. Micromechanics calibration. Int J Fract 89(4):355–373. doi:10.1023/A:1007421420901
Article
Google Scholar
Ghahremaninezhad A, Ravi-Chandar K (2013) Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading. Int J Fract 180(1):23–39. doi:10.1007/s10704-012-9793-0
Article
Google Scholar
Gruben G, Fagerholt E, Hopperstad OS, Børvik T (2011) Fracture characteristics of a cold-rolled dual-phase steel. Eur J Mech A/Solids 30(3):204–218. doi:10.1016/j.euromechsol.2011.01.004
Article
Google Scholar
Gruben G, Vysochinskiy D, Coudert T, Reyes A, Lademo OG (2013) Determination of ductile fracture parameters of a dual-phase steel by optical measurements. Strain 49(3):221–232. doi:10.1111/str.12030
Article
Google Scholar
Gruben G, Morin D, Langseth M, Hopperstad O (2017) Strain localization and ductile fracture in advanced high-strength steel sheets. Eur J Mech A/Solids 61:315–329. doi:10.1016/j.euromechsol.2016.09.014
Article
Google Scholar
Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15. doi:10.1115/1.344340
Article
Google Scholar
Haddag B, Abed-Meraim F, Balan T (2009) Strain localization analysis using a large deformation anisotropic elastic–plastic model coupled with damage. Int J Plast 25(10):1970–1996. doi:10.1016/j.ijplas.2008.12.013
Article
Google Scholar
Haltom S, Kyriakides S, Ravi-Chandar K (2013) Ductile failure under combined shear and tension. Int J Solids Struct 50(10):1507–1522. doi:10.1016/j.ijsolstr.2012.12.009
Article
Google Scholar
Hutchinson J, Tvergaard V (1981) Shear band formation in plane strain. doi:10.1016/0020-7683(81)90053-6
Jia Y, Bai Y (2016) Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. Int J Mech Sci. doi:10.1016/j.ijmecsci.2016.07.022
Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin/Heidelberg. doi:10.1007/b138882, arXiv:1011.1669v3
Madou K, Leblond JB (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voidsI: limit-analysis of some representative cell. J Mech Phys Solids 60(5):1020–1036. doi:10.1016/j.jmps.2011.11.008
Article
Google Scholar
Marciniak Z, Kuczynski K (1967) Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci 9(9):609–620. doi:10.1016/0020-7403(67)90066-5
Article
Google Scholar
Mear ME, Hutchinson JW (1985) Influence of yield surface curvature on flow localization in dilatant plasticity. doi:10.1016/0167-6636(85)90035-3
Mohr D, Marcadet SJ (2015) Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int J Solids Struct 67–68:40–55. doi:10.1016/j.ijsolstr.2015.02.024
Article
Google Scholar
Morin L, Leblond JB, Tvergaard V (2016) Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings. J Mech Phys Solids 94:148–166. doi:10.1016/j.jmps.2016.04.032
Article
Google Scholar
Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A/Solids 27(1):1–17. doi:10.1016/j.euromechsol.2007.08.002
Article
Google Scholar
Needleman A, Rice JR (1978) Limits to ductility set by plastic flow localization. Mech Sheet Metal form 237–267. doi:10.1007/978-1-4613-2880-3_10
Nielsen KL, Tvergaard V (2010) Ductile shear failure or plug failure of spot welds modelled by modified Gurson model. Eng Fract Mech 77(7):1031–1047. doi:10.1016/j.engfracmech.2010.02.031
Article
Google Scholar
Papasidero J, Doquet V, Mohr D (2014) Determination of the effect of stress state on the onset of ductile fracture through tension-torsion experiments. Exp Mech 54(2):137–151. doi:10.1007/s11340-013-9788-4
Article
Google Scholar
Rice JR (1976) The localization of plastic deformation. In: 14th International congress of theoretical and applied mechanics, pp 207–220
Roth CC, Mohr D (2015) Ductile fracture experiments with locally proportional loading histories. Int J Plast 79:328–354. doi:10.1016/j.ijplas.2015.08.004
Article
Google Scholar
Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394. doi:10.1016/0022-5096(75)90001-0
Article
Google Scholar
Saje M, Pan J, Needleman A (1982) Void nucleation effects on shear localization in porous plastic solids. Int J Fract 19(3):163–182. doi:10.1007/BF00017128
Article
Google Scholar
Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389–407. doi:10.1007/BF00036191
Article
Google Scholar
Tvergaard V (2015) Study of localization in a void-sheet under stress states near pure shear. Int J Solids Struct 75–76:134–142. doi:10.1016/j.ijsolstr.2015.08.008
Article
Google Scholar
Xue L, Wierzbicki T (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75(11):3276–3293. doi:10.1016/j.engfracmech.2007.08.012
Article
Google Scholar
Yamamoto H (1978) Conditions for shear localization in the ductile fracture of void-containing materials. Int J Fract 14(4):347–365. doi:10.1007/BF00015989
Article
Google Scholar