International Journal of Fracture

, Volume 205, Issue 2, pp 203–220 | Cite as

A new graded singular finite element for crack problems in functionally graded materials

Original Paper

Abstract

A new graded singular finite element is proposed for analyzing crack problems in linear elastic isotropic functionally graded materials (FGMs) with spatially varying elastic parameters. The general formulation of the suggested singular element is obtained by analyzing the crack tip stress field using the Westergaard stress function method. The general shape function is generated by integrating the strains obtained from the stress function. The stiffness matrix for the singular element is then determined using the principle of minimum potential energy. Using the displacement continuity between the singular and the adjacent regular elements, stiffness matrices are assembled. This new element is characterized by containing both singular and higher order terms, which provides more precise description of the crack tip fields. The validity of the new element is demonstrated by comparing with existing solutions. This element is implemented for simulating crack problems in FGMs whose elastic properties vary normal to the crack line. Stress intensity factors, energy release rates, levels of non-singular stresses, and stress distributions near the crack tip are investigated. Numerical results reveal that the introduced graded singular element is more efficient than conventional finite elements as it provides more accurate description of the crack tip field with less efforts.

Keywords

Functionally graded material Fracture mechanics Stress intensity factor Singular finite element Graded element 

Notes

Acknowledgements

This research is financially supported by Natural Sciences and Engineering Research Council of Canada (NSERC).

References

  1. Afsar a M, Song JI (2010) Effect of FGM coating thickness on apparent fracture toughness of a thick-walled cylinder. Eng Fract Mech 77(14):2919–2926. doi: 10.1016/j.engfracmech.2010.07.001 CrossRefGoogle Scholar
  2. Ajdari A, Nayeb-Hashemi H, Vaziri A (2011) Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. Int J Solids Struct 48(3–4):506–516. doi: 10.1016/j.ijsolstr.2010.10.018 CrossRefGoogle Scholar
  3. Anlas G, Santare M, Lambros J (2000) Numerical calculation of stress intensity factors in functionally graded materials. Int J Fract. doi: 10.1023/A:1007652711735 Google Scholar
  4. Bao G, Wang L (1995) Multiple cracking in functionally graded ceramic/metal coatings. Int J Solids Struct 32(18):2853–2871CrossRefGoogle Scholar
  5. Bayesteh H, Mohammadi S (2013) XFEM fracture analysis of orthotropic functionally graded materials. Compos Part B Eng 44(1):8–25. doi: 10.1016/j.compositesb.2012.07.055 CrossRefGoogle Scholar
  6. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620CrossRefGoogle Scholar
  7. Carneiro MB, Machado IF (2013) Sintering and model of thermal residual stress for getting cutting tools from functionally gradient materials. Procedia CIRP 8:200–205. doi: 10.1016/j.procir.2013.06.089 CrossRefGoogle Scholar
  8. Chalivendra VB, Shukla a, Parameswaran V (2003) Quasi-static stress fields for a crack inclined to the property gradation in functionally graded materials. Acta Mech 162(1–4):167–184Google Scholar
  9. Chen L et al (2011) A singular edge-based smoothed finite element method ( ES-FEM ) for crack analyses in anisotropic media. Eng Fract Mech 78(1):85–109. doi: 10.1016/j.engfracmech.2010.09.018 CrossRefGoogle Scholar
  10. Chiong I et al (2014) Scaled boundary polygons with application to fracture analysis of functionally graded materials. Int J Numer Methods Eng 98:562–589CrossRefGoogle Scholar
  11. Chu P et al (2015) Double cantilever beam model for functionally graded materials based on two-dimensional theory of elasticity. Eng Fract Mech 135:232–244. http://linkinghub.elsevier.com/retrieve/pii/S0013794415000090
  12. Delale F, Erdogan F (1983) The crack problem for a nonhomogeneous plane. J Appl Mech 50(3):609–614CrossRefGoogle Scholar
  13. Dolbow J, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39(9):2557–2574. http://www.sciencedirect.com/science/article/B6VJS-45BHD85-1/2/78a764abf54b6a9fc0635faf94ea0307. http://linkinghub.elsevier.com/retrieve/pii/S0020768302001142
  14. Erdogan F (1995) Fracture mechanics of functionally graded materials. Compos Eng 5(7):753–770CrossRefGoogle Scholar
  15. Fett T (1998) Stress intensity factors and weight functions for special crack problems. Report FZKA, 6025, pp 1–36. http://www.ubka.uni-karlsruhe.de/volltexte/fzk/6025/6025.pdf
  16. Gao XW et al. (2008) Fracture analysis of functionally graded materials by a BEM. Compos Sci Technol 68(5):1209–1215. http://www.sciencedirect.com/science/article/pii/S0266353807003508
  17. Goli E, Kazemi MT (2014) XFEM modeling of fracture mechanics in transversely isotropic FGMs via interaction integral method. Procedia Mater Sci 3:1257–1262. http://www.sciencedirect.com/science/article/pii/S2211812814002053
  18. Gong H et al (2012) Effects of materials of cementless femoral stem on the functional adaptation of bone. J Bionic Eng 9(1):66–74. doi: 10.1016/S1672-6529(11)60098-X CrossRefGoogle Scholar
  19. Hirano T, Teraki J, Yamada T (1990) On the design of functionally gradient materials. In: Yamanouchi M et al (eds) Proceedings of the first international symposium on functionally gradient materials, Sendai, Japan, pp 5–10Google Scholar
  20. Hosseini SS, Bayesteh H, Mohammadi S (2013) A Thermo-mechanical XFEM crack propagation analysis of functionally graded materials. Mater Sci Eng A 561:285–302. doi: 10.1016/j.msea.2012.10.043 CrossRefGoogle Scholar
  21. Jain N, Rousseau CE, Shukla A (2004) Crack-tip stress fields in functionally graded materials with linearly varying properties. Theor Appl Fract Mech 42(2):155–170. http://linkinghub.elsevier.com/retrieve/pii/S0167844204000291
  22. Jin ZH, Batra RC (1996) Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids 44(8):1221–1235CrossRefGoogle Scholar
  23. Jin ZH, Wallace TT (2015) Functionally graded thermoelectric materials with arbitrary property gradations: a one-dimensional semianalytical study. J Electr Mater 44(6):1444–1449. http://link.springer.com/10.1007/s11664-014-3408-7
  24. Kim J-H, Paulino GH (2002a) Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J Appl Mech 69(4):502Google Scholar
  25. Kim JH, Paulino GH (2002b) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Methods Eng 53(8):1903–1935. http://doi.wiley.com/10.1002/nme.364
  26. Kim JH, Paulino GH (2002c) Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method. Eng Fract Mech 69(14–16):1557–1586Google Scholar
  27. Kim J, Paulino GH (2004) Simulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading. Int J Mech Mater Des 1:63–94CrossRefGoogle Scholar
  28. Lee YD, Erdogan F (1994) Residual/thermal stresses in FGM and laminated thermal barrier coatings. Int J Fract 69(2):145–165. doi: 10.1007/BF00035027 CrossRefGoogle Scholar
  29. Liu GR, Dai K, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39:859–877Google Scholar
  30. Liu GR, Nguyen-thoi T, Lam KY (2009) An edge-based smoothed finite element method ( ES-FEM ) for static, free and forced vibration analyses of solids. J Sound Vib 320:1100–1130CrossRefGoogle Scholar
  31. Liu GR, Nourbakhshnia N, Zhang YW (2011) A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems. Eng Fract Mech 78(6):863–876. doi: 10.1016/j.engfracmech.2009.11.004 CrossRefGoogle Scholar
  32. Marur PR, Tippur HV (2000) Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int J Solids Struct 37(38):5353–5370CrossRefGoogle Scholar
  33. Miyamoto Y (ed) (1999) Functionally graded materials. Kluwer Academic Publishers, BostonGoogle Scholar
  34. Moes NMO, Dolbow J, Belytschko TED (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 150(February):131–150CrossRefGoogle Scholar
  35. Ooi ET et al (2012) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Methods Eng 91:319–342Google Scholar
  36. Ooi ET et al (2013) Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique. Eng Fract Mech 106(2012):1–21. doi: 10.1016/j.engfracmech.2013.02.002 CrossRefGoogle Scholar
  37. Pan H, Song T, Wang Z (2015) An analytical model for collinear cracks in functionally graded materials with general mechanical properties. Compos Struct 132:359–371. http://linkinghub.elsevier.com/retrieve/pii/S0263822315004298
  38. Parameswaran V, Shukla a (2002) Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials. J Appl Mech 69(3):240CrossRefGoogle Scholar
  39. Petrova V, Schmauder S (2014) FGM/homogeneous bimaterials with systems of cracks under thermo-mechanical loading: analysis by fracture criteria. Eng Fract Mech 130:12–20. doi: 10.1016/j.engfracmech.2014.01.014 CrossRefGoogle Scholar
  40. Shih CF, de Lorenzi H, German M (1976) Crack extension modeling with singular quadratic. Int J Fract 12(3):647–651CrossRefGoogle Scholar
  41. Shojaee S, Daneshmand a (2015) Crack analysis in media with orthotropic functionally graded materials using extended isogeometric analysis. Eng Fract Mech 147:203–227. doi: 10.1016/j.engfracmech.2015.08.025 CrossRefGoogle Scholar
  42. Singh IV, Mishra BK, Bhattacharya S (2011) XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int J Mech Mater Des 7(3):199–218CrossRefGoogle Scholar
  43. Song C, Wolf JP (1998) The scaled boundary finite-element method? Analytical solution in frequency domain. Comput Methods Appl Mech Eng 164:249–264CrossRefGoogle Scholar
  44. Song C, Tin-loi F, Gao W (2010) A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges. Eng Fract Mech 77(12):2316–2336. doi: 10.1016/j.engfracmech.2010.04.032
  45. Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials. IOM Communications Ltd, LondonGoogle Scholar
  46. Tan M (1998) On the singular stress field at the interface of bimaterial systems. University of Toronto, TorontoGoogle Scholar
  47. Tat E, Sundararajan O, Tin-loi CSF (2015) Crack propagation modelling in functionally graded. Int J Fract 192:87–105CrossRefGoogle Scholar
  48. Wang BL, Mai Y, Noda N (2006) Fracture mechanics analysis model for functionally graded materials with arbitrarily distributed properties. Int J Fract 1994:161–177Google Scholar
  49. Watanabe Y et al (1993) A magnetic-functionally graded material manufactured with deformation-induced martensitic transformation. J Mater Sci Lett 12(5):326–328. http://link.springer.com/10.1007/BF01910093
  50. Wośko, M, Paszkiewicz B, Piasecki T (2005) Applications of functionally graded materials in optoelectronic devices. Optica Appl XXXV(3). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Applications+of+functionally+graded+materials+in+optoelectronic+devices#0
  51. Yue Z, Xiao H, Tham L (2003) Boundary element analysis of crack problems in functionally graded materials. Int J Solids Struct 40:3273–3291. doi: 10.1016/j.mspro.2014.06.311 CrossRefGoogle Scholar
  52. Zhang C et al (2003a) Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comput Mater Sci 26:167–174CrossRefGoogle Scholar
  53. Zhang C, Sladek J, Sladek V (2003b) Numerical analysis of cracked functionally graded materials. Key Eng Mater 251–252:463–472. http://www.scientific.net/KEM.251-252.463
  54. Zhang C, Sladek J, Sladek V (2005) Antiplane crack analysis of a functionally graded material by a BIEM. Comput Mater Sci 32(3–4):611–619CrossRefGoogle Scholar
  55. Zienkiewicz OC, Emeritus F (2000) The finite element method fifth edition volume 1? The basis. Butterworth-Heinemann, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations