Skip to main content

Lattice orientation and crack size effect on the mechanical properties of Graphene

Abstract

The effect of lattice orientation and crack length on the mechanical properties of Graphene are studied based on molecular dynamics simulations. Bond breaking and crack initiation in an initial edge crack model with 13 different crack lengths, in 10 different lattice orientations of Graphene are examined. In all the lattice orientations, three recurrent fracture patterns are reported. The influence of the lattice orientation and crack length on yield stress and yield strain of Graphene is also investigated. The arm-chair fracture pattern is observed to possess the lowest yield properties. A sudden decrease in yield stress and yield strain can be noticed for crack sizes <10 nm. However, for larger crack sizes, a linear decrease in yield stress is observed, whereas a constant yield strain of \(\approx \)0.05 is noticed. Therefore, the yield strain of \(\approx \)0.05 can be considered as a critical strain value below which Graphene does not show failure. This information can be utilized as a lower bound for the design of nano-devices for various strain sensor applications. Furthermore, the yield data will be useful while developing the Graphene coating on Silicon surface in order to enhance the mechanical and electrical characteristics of solar cells and to arrest the growth of micro-cracks in Silicon cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Ansari R, Ajori S, Motevalli B (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct 51:274–289

    Article  Google Scholar 

  • Berardone I, Corrado M, Paggi M (2014) A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects. Energy Procedia 55:22–29

    Article  Google Scholar 

  • Bu H, Chen Y, Zou M, Yi H, Bi K, Ni Z (2009) Atomistic simulations of mechanical properties of graphene nanoribbons. Phys Lett A 373:3359–3362

    Article  Google Scholar 

  • Budarapu P, Javvaji B, Sutrakar V, Mahapatra D, Zi G, Rabczuk T (2015) Crack propagation in graphene. J Appl Phys 118:382–395

    Article  Google Scholar 

  • Budarapu P, Rammohan B, Vijay S, Satish B, Raghunathan R (2009) Aero-elastic analysis of stiffened composite wing structure. J Vib Eng Technol 8(3):255–264

    Google Scholar 

  • Budarapu P, Sudhir S, Brahmanandam J, Mahapatra D (2014c) Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front Struct Civil Eng 8(2):151–159

    Article  Google Scholar 

  • Cao G (2014) Atomistic studies of mechanical properties of graphene. Polymers 6:2404–2432

    Article  Google Scholar 

  • Changgu L, Xiaoding W, Jeffrey WK, James H (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  • Chen K, Bin S, Yonghai Y, Juanjuan Q, Lin G (2015a) Binary synergy strengthening and toughening of bio-inspired nacre-like graphene oxide/sodium alginate composite paper. ACS Nano 9(8):8165–8175

    Article  Google Scholar 

  • Chen M, Quek S, Sha Z, Chiu C, Pei Q, Zhang Y (2015b) Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene -a molecular dynamics study. Carbon 85:135–146

    Article  Google Scholar 

  • Chuvilin A, Meyer J, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. New J Phys 11:083019

    Article  Google Scholar 

  • Datta D, Nadimpalli S, Yinfeng L, Shenoy V (2015) Effect of crack length and orientation on the mixed-mode fracture behavior of graphene. Extreme Mech Lett 5:10–17

    Article  Google Scholar 

  • Fengnian X, Han W, Di X, Madan D, Ashwin R (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907

    Article  Google Scholar 

  • Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768–779

    Article  Google Scholar 

  • Gamboa A, Vignoles G, Leyssale J-M (2015) On the prediction of graphene’s elastic properties with reactive empirical bond order potentials. Carbon 89:176–187

    Article  Google Scholar 

  • Geim A (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  • Grantab R, Shenoy V, Ruoff R (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330:946–948

    Article  Google Scholar 

  • Hadden C, Klimek-McDonald D, Pineda E, King J, Reichanadter A, Miskioglu I, Gowtham S, Odegard G (2015) Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments. Carbon 95:100–112

    Article  Google Scholar 

  • Huhu C, Chuangang H, Yang Z, Liangti Q (2014) Graphene fiber: a new material platform for unique applications. NPG Asia Mater 6:e113

    Article  Google Scholar 

  • Jhon Y, Jhom Y, Yoem G, Jhon M (2014) Orientation dependence of the fracture behavior of graphene. Carbon 66:619–628

    Article  Google Scholar 

  • Jhon Y, Zhu S, Ahn J, Jhon M (2012) The mechanical responses of tilted and non-tilted grain boundaries in graphene. Carbon 50:3708–3716

    Article  Google Scholar 

  • Jin C, Lan H, Peng L, Suenaga K, Iijima S (2009) Deriving carbon atomic chains from graphene. Phys Rev Lett 102:205501

    Article  Google Scholar 

  • Khare R, Mielke S, Paci J, Zhang S, Ballarini R, Schatz G, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75:075412

    Article  Google Scholar 

  • Kim K, Artyukhov V, Regan W, Liu Y, Crommie M, Yakobson B, Zettl A (2012) Ripping graphene: preferred directions. Nano Lett 12:293–297

    Article  Google Scholar 

  • Kim Y, Lee J, Yeom M, Shin J, Kim H, Cui Y, Kysar J, Hone J, Jung Y, Jeon S, Han S (2013) Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat Commun 4:2114

    Google Scholar 

  • Kinam K, Jae-Young C, Taek K, Seong-Ho C, Hyun-Jong C (2011) A role for graphene in silicon-based semiconductor devices. Nature 479:338–344

  • Köntges M, Kunze I, Kajari-Schröder S, Breitenmoser X, Bjrneklett B (2011) The risk of power loss in crystalline silicon based photovoltaic modules due to microcracks. Sol Energy Mater Sol Cells 95:1131–1137

    Article  Google Scholar 

  • Kostarelos K, Novoselov K (2014) Graphene devices for life. Nat Nanotechnol 9:744–745

    Article  Google Scholar 

  • Kravets V, Jalil R, Kim Y-J, Ansell D, Aznakayeva D, Thackray B, Britnell L, Belle B, Withers F, Radko I, Han Z, Bozhevolnyi S, Novoselov K, Geim A, Grigorenko A (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4:5517

    Article  Google Scholar 

  • Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120

    Article  Google Scholar 

  • Liu J (2014) Charging graphene for energy. Nat Nanotechnol 9:739–741

    Article  Google Scholar 

  • Marc G, McMillan W (1985) The virial theorem. Adv Chem Phys 58:209

    Google Scholar 

  • Mics Z, Tielrooij K-J, Parvez K, Jensen S, Ivanov I, Feng X, M“ullen K, Bonn M, Turchinovich D (2015) Thermodynamic picture of ultrafast charge transport in graphene. Nat Commun 6:7655

    Article  Google Scholar 

  • Morpurgo A (2015) Ten years of nature physics: the abc of 2D materials. Nat Phys 11:625–626

    Article  Google Scholar 

  • Paggi M, Berardone I, Infuso A, Corrado M (2014) Fatigue degradation and electric recovery in silicon solar cells embedded in photovoltaic modules. Sci Rep 4:4506

    Google Scholar 

  • Paggi M, Corrado M, Rodriguez MA (2013) A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos Struct 95:630–638

    Article  Google Scholar 

  • Paggi M, Kajari-Schröder S, Eitner U (2011) Thermo-mechanical deformations in photovoltaic laminates. J Strain Anal Eng Des 46(8):772–782

    Article  Google Scholar 

  • Pei Q, Zhang Y, Shenoy V (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904

    Article  Google Scholar 

  • Peng Z, Lulu M, Feifei F, Zhi Z, Cheng P, Phillip EL, Zheng L, Yongji G, Jiangnan Z, Xingxiang Z, Pulickel MA, Ting Z, Jun L (2014) Fracture toughness of graphene. Nat Commun 5:3782

    Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  • Pospischil A, Furchi M, Mueller T (2014) Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9:257–261

    Article  Google Scholar 

  • Quan L, Zhen T, Xueqian Z, Ranjan S, Liangliang D, Jianqiang G, Jiaguang H, Weili Z (2015) Active graphene-silicon hybrid diode for terahertz waves. Nat Commun 6:7082

    Article  Google Scholar 

  • Rodrigues G, Zelenovskiy P, Romanyuk K, Luchkin S, Kopelevich Y, Kholkin A (2015) Strong piezoelectricity in single-layer graphene deposited on sio\(_2\) grating substrates. Nat Commun 6:7572

    Article  Google Scholar 

  • Santanu S, Elena B, Haddon RC (2012) Covalent chemistry in graphene electronics. Mater Today 15(6):276–285

    Article  Google Scholar 

  • Sarma D, Adam S, Hwang E, Rossi E (2011) Electronic transport in two dimensional graphene. Rev Mod Phys 83:407–470

    Article  Google Scholar 

  • Schröder SK, Kunze I, Köntges M (2012) Criticality of cracks in PV modules. Energy Procedia 27:658–663

  • Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  Google Scholar 

  • Shenderova O, Brenner D, Omeltchenko A, Su X, Yang L (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877–3888

    Article  Google Scholar 

  • Shin S, Choi H, Shin J, Bae D (2015) Strengthening behavior of few-layered graphene/ aluminum composites. Carbon 82:143–151

    Article  Google Scholar 

  • Son I, Park J, Kwon S, Park S, R“ummeli M, Bachmatiuk A, Song H, Ku J, Choi J, Choi J, Doo S-G, Chang H (2015) Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun 6:7393

    Article  Google Scholar 

  • Subramaniyan A, Sun C (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45:4340–4346

    Article  Google Scholar 

  • Sun X-Y, Hu H, Cao C, Xua Y-J (2015) Anisotropic vacancy-defect-induced fracture strength loss of graphene. RSC Adv 5:13623–13627

    Article  Google Scholar 

  • Swope W, Anderson H, Berens P, Wilson K (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637

    Article  Google Scholar 

  • Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568

    Article  Google Scholar 

  • Thomas S, Ajith K (2014) Molecular dynamics simulation of the thermo-mechanical properties of monolayer graphene sheet. Proc Mater Sci 5:489–498

    Article  Google Scholar 

  • Tiwary C, Javvaji B, Kumar C, Mahapatra D, Ozden S, Ajayan P, Chattopadhyay K (2015) Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon 217–224

  • Tiwary CS, Vishnu D, Kole AK, Brahmanandam J, Mahapatra DR, Kumbhakar P, Chattopadhyay K (2016) Stabilization of the high-temperature and high-pressure cubic phase of ZnO by temperature-controlled milling. J Mater Sci 51(1):126–137

  • Traversi F, Raillon C, Benameur S, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A (2014) Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnol 8:939–945

    Article  Google Scholar 

  • Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49:198–205

  • Volokh KY (2012) On the strength of graphene. J Appl Mech 79(6):064501–064501. doi:10.1115/1.4005582

    Article  Google Scholar 

  • Weiwei Z, Yanlei W, Zhangting W, Wenhui W, Kedong B, Zheng L, Juekuan Y, Yunfei C, Zhiping X, Zhenhua N (2015) Defect-engineered heat transport in graphene: a route to high efficient thermal rectification. Sci Rep 5:11962

    Article  Google Scholar 

  • Wen S, Yuqi Y, Jiangnan S, Hua C (2012) A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent: synthesis and intrinsic chemiluminescence activity. Chem Commun 48:2894–2896

    Article  Google Scholar 

  • Xue T, Peng B, Xue M, Zhong X, Chiu C-Y, Yang S, Qu Y, Ruan L, Jiang S, Dubin S, Kaner R, Zink J, Meyerhoff M, Duan X, Huang Y (2014) Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nat Commun 5:3200

    Google Scholar 

  • Xuechao Y, Youde S, Tao L, Tao(Tom) W, Wang QJ (2015) Photocurrent generation in lateral graphene p–n junction created by electron-beam irradiation. Sci Rep 5:12014

    Article  Google Scholar 

  • Ying-Yan Z, Qing-Xiang P, Yiu-Wing M, Yuan-Tong G (2014) Temperature and strain-rate dependent fracture strength of graphynes. J Phys D Appl Phys 47(42):425301

    Article  Google Scholar 

  • Zan L, Genlian F, Qiang G, Zhiqiang L, Yishi S, Di Z (2015) Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95:419–427

    Article  Google Scholar 

  • Zhang H, Wu J, He J, Zhang Z (2012a) Effect of hole size on the fracture of graphene nanomesh. In: Proceeding of the 19th European conference on fracture, ISBN 978-5-905576-18-8

  • Zhang T, Li X, Kadkhodaei S, Gao H (2012b) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610

    Article  Google Scholar 

  • Zhang Y, Zhao J, Wie N, Jiang J, Rabczuk T (2013) Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer. Compos Part B Eng 45(1):1714–1721

    Article  Google Scholar 

  • Zhao H, Aluru N (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108:064321

    Article  Google Scholar 

  • Zhao H, Min K, Aluru N (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9(8):3012–3015

    Article  Google Scholar 

Download references

Acknowledgments

B. Javvaji, D. R. Mahaptra and T. Rabczuk gratefully acknowledge the financial support from the Germany Science Foundation (DFG) and from the International Research Staff Exchange Scheme (IRSES), FP7-PEOPLE-2010-IRSES, through the project ‘MultiFrac’. M. Paggi and P. R. Budarapu acknowledge funding from the European Research Council (ERC), Grant No. 306622 to the ERC Starting Grant “Multi-field and multi-scale Computational Approach to Design and Durability of PhotoVoltaic Modules”—CA2PVM. B. Javvaji and D. R. Mahapatra thankfully acknowledge the use of computational facilities at the ACECOST Computational Science Lab, Department of Aerospace Engineering, IISc and funding under ACECOST Phase-III program of Aeronautics Research and Development Board, India. Zi appreciates the financial support through Grant No. 20133010021770, from the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Trade, Industry & Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Budarapu.

Appendix: Tersoff potential function

Appendix: Tersoff potential function

The mathematical expression of the bond energy based on the Tersoff potential is given in Eq. (1). The bond energy in the Tersoff framework is a combination of repulsive (\(f_R\)) energy function which is exponentially decaying and attractive (\(f_A\)) energy function that exponentially increases; with the increase of distance between the atoms. \(f_c\) is a smooth spherical cutoff function around atom \(\upalpha \) based upon the distance to the first nearest-neighbor shell. The function \(f_c\) in Eq. (1) is defined as (Tersoff 1989):

$$\begin{aligned}&f_c(r_{\upalpha \upbeta })\nonumber \\&\quad = \left\{ \begin{array}{ll} 1 &{} \text {when}~r_{\upalpha \upbeta }< \mathcal {R}_{\upalpha \upbeta } \\ \frac{1}{2} + \frac{1}{2} \cos \left( \frac{\pi ( r_{\upalpha \upbeta }-\mathcal {R}_{\upalpha \upbeta })}{(\mathcal {S}_{\upalpha \upbeta }-\mathcal {R}_{\upalpha \upbeta })} \right) &{} \text {when}~\mathcal {R}_{\upalpha \upbeta }< r_{\upalpha \upbeta } < \mathcal {S}_{\upalpha \upbeta } \\ 0 &{} \text {when}~r_{\upalpha \upbeta } > \mathcal {S}_{\upalpha \upbeta } \end{array} \right. \nonumber \\ \end{aligned}$$
(3)

from Eq. (3), \(f_c\) returns a value of 1 if \(r_{\upalpha \upbeta }\) is less than \(\mathcal {R}_{\upalpha \upbeta }\) and 0 when \(r_{\upalpha \upbeta }\) greater than \(\mathcal {S}_{\upalpha \upbeta }\). The values of the constants \(\mathcal {R}_{\upalpha \upbeta }\) = \(\sqrt{\mathcal {R}_\upalpha \mathcal {R}_\upbeta }\) and \(\mathcal {S}_{\upalpha \upbeta }\) = \(\sqrt{\mathcal {S}_\upalpha \mathcal {S}_\upbeta }\), (where \(\upalpha \) and \(\upbeta \) can be two different atom types, like Silicon and Carbon) are listed for Silicon and Carbon atoms in Tersoff (1989). The repulsive and attractive potential energies are tuned with the parameters \(\mathcal {A}_{\upalpha \upbeta }\) and \(\mathcal {B}_{\upalpha \upbeta }\), respectively. The repulsive potential energy is defined as (Tersoff 1989)

$$\begin{aligned} f_R(r_{\upalpha \upbeta }) = \mathcal {A}_{\upalpha \upbeta } e^{-\mathcal {D}_{\upalpha \upbeta } r_{\upalpha \upbeta } } \end{aligned}$$
(4)

and the attractive potential energy is estimated from Tersoff (1989)

$$\begin{aligned} f_A(r_{\upalpha \upbeta }) = -\mathcal {B}_{\upalpha \upbeta } e^{-\mathcal {E}_{\upalpha \upbeta } r_{\upalpha \upbeta } } \end{aligned}$$
(5)

where \(\mathcal {A} = \sqrt{\mathcal {A}_\upalpha \mathcal {A}_\upbeta }\), \(\mathcal {B} = \sqrt{\mathcal {B}_\upalpha \mathcal {B}_\upbeta }\), \(\mathcal {D}_{\upalpha \upbeta } = (\mathcal {D}_\upalpha + \mathcal {D}_\upbeta )/2\) and \(\mathcal {E}_{\upalpha \upbeta }=(\mathcal {E}_\upalpha + \mathcal {E}_\upbeta )/2\), in Eqs. (4) and (5) are constants. The variable \(b_{\upalpha \upbeta }\) in Eq. (1) is designed to represent the bond strength of the potential. \(b_{\upalpha \upbeta }\) is inversely proportional to the coordination number and is defined as (Tersoff 1989)

$$\begin{aligned} b_{\upalpha \upbeta } = \xi _{\upalpha \upbeta } \left( 1 + \mathcal {P}_\upalpha ^{q_\upalpha } {\upzeta }_{\upalpha \upbeta }^{q_\upalpha } \right) ^{-1/2q_\upalpha } \end{aligned}$$
(6)

where \(\mathcal {P}\) and q are the constants. \(\upzeta _{\upalpha \upbeta }\) provides a weighted measure of the number of other bonds (\(\upgamma \)) competing with the bond \(\upalpha \)-\(\upbeta \), which is defined as (Tersoff 1989)

$$\begin{aligned} \upzeta _{\upalpha \upbeta } = \sum _{\upgamma \ne \upalpha ,\upbeta } f_c\left( r_{\upalpha \upgamma } \right) g\left( {\uptheta }_{\upalpha \upbeta \upgamma }\right) \end{aligned}$$
(7)

where \(\upxi _{\upalpha \upbeta }\) is the strengthening or weakening factor of the hetero-polar bonds and \(g\left( \uptheta _{\upalpha \upbeta \upgamma }\right) \) provides a measure of dependence on the bonding angle \(\uptheta _{\upalpha \upbeta \upgamma }\), subtended at atom \(\upalpha \) by atoms \(\upbeta \) and \(\upgamma \). The variable \(g\left( \uptheta _{\upalpha \upbeta \upgamma }\right) \) is included to stabilize the atomic geometry under shear operations and to provide an effective coordination contribution based on the elastic energy of the current configuration, which is defined as (Tersoff 1989)

$$\begin{aligned} g\left( {\uptheta }_{\upalpha \upbeta \upgamma }\right) = 1 + \frac{c_\upalpha ^2}{d_\upalpha ^2} - \frac{c_\upalpha ^2}{d_\upalpha ^2 + \left( h_\upalpha -\cos \left( {\uptheta }_{\upalpha \upbeta \upgamma }\right) \right) ^2} \end{aligned}$$
(8)

where \(c_\upalpha \), \(d_\upalpha \) and \(h_\upalpha \) are the constants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Budarapu, P.R., Javvaji, B., Sutrakar, V.K. et al. Lattice orientation and crack size effect on the mechanical properties of Graphene. Int J Fract 203, 81–98 (2017). https://doi.org/10.1007/s10704-016-0115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0115-9

Keywords

  • Graphene fracture
  • Molecular dynamics
  • Bond elongation and rotation
  • Lattice orientation and initial crack size