Skip to main content

Energy dissipation via acoustic emission in ductile crack initiation

Abstract

This article presents a modeling approach to estimate the energy release due to ductile crack initiation in conjunction to the energy dissipation associated with the formation and propagation of transient stress waves typically referred to as acoustic emission. To achieve this goal, a ductile fracture problem is investigated computationally using the finite element method based on a compact tension geometry under Mode I loading conditions. To quantify the energy dissipation associated with acoustic emission, a crack increment is produced given a pre-determined notch size in a 3D cohesive-based extended finite element model. The computational modeling methodology consists of defining a damage initiation state from static simulations and linking such state to a dynamic formulation used to evaluate wave propagation and related energy redistribution effects. The model relies on a custom traction separation law constructed using full field deformation measurements obtained experimentally using the digital image correlation method. The amount of energy release due to the investigated first crack increment is evaluated through three different approaches both for verification purposes and to produce an estimate of the portion of the energy that radiates away from the crack source in the form of transient waves. The results presented herein propose an upper bound for the energy dissipation associated to acoustic emission, which could assist the interpretation and implementation of relevant nondestructive evaluation methods and the further enrichment of the understanding of effects associated with fracture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • ABAQUS (2013) version 6.13, 2013. User’s Manual. Dassault Systems, Pawtucket, RI

  • Achenbach J (1973) Wave propagation in elastic solids. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  • ASTM E1820-01 (2001) Standard test method for measurement of fracture toughness, pp 1–46

  • ASTM E1316-10c (2010) Standard terminology for nondestructive examinations. West Conshohocken, PA

  • Auld BA (1973) Acoustic fields and waves in solids. I. Wiley-Interscience, New York

    Google Scholar 

  • Boler FM (1990) Measurements of radiated elastic wave energy from dynamic tensile cracks. J Geophys Res: Solid Earth 95:2593–2607

    Article  Google Scholar 

  • Bosia F, Pugno N, Lacidogna G, Carpinteri A (2008) Mesoscopic modeling of acoustic emission through an energetic approach. Int J Solids Struct 45:5856–5866

    Article  Google Scholar 

  • Boyce BL, Kramer SLB, Fang HE, Cordova TE, Neilsen MK, Dion K, Kaczmarowski AK, Karasz E, Xue L, Gross AJ, Ghahremaninezhad A, Ravi-Chandar K, Lin SP, Chi SW, Chen JS, Yreux E, Rüter M, Qian D, Zhou Z, Bhamare S, O’Connor DT, Tang S, Elkhodary KI, Zhao J, Hochhalter JD, Cerrone AR, Ingraffea AR, Wawrzynek PA, Carter BJ, Emery JM, Veilleux MG, Yang P, Gan Y, Zhang X, Chen Z, Madenci E, Kilic B, Zhang T, Fang E, Liu P, Lua J, Nahshon K, Miraglia M, Cruce J, DeFrese R, Moyer ET, Brinckmann S, Quinkert L, Pack K, Luo M, Wierzbicki T (2014) The Sandia fracture challenge: blind round robin predictions of ductile tearing. Int J Fract 186:5–68

    Article  Google Scholar 

  • Brocks W, Scheider I, Geesthacht G-F (2001) Numerical aspects of the path-dependence of the j-integral in incremental plasticity. GKSS Forschungszentrum, Geesthacht, Germany, Technical Report No. GKSS/WMS/01/08

  • Carka D, Landis CM (2010) On the path-dependence of the J-integral near a stationary crack in an elastic-plastic material. J Appl Mech 78:011006

    Article  Google Scholar 

  • Cherepanov GP (1967) Crack propagation in continuous media: PMM vol. 31, no. 3, 1967, pp. 476–488. J Appl Math Mech 31:503–512

  • Chung J-B, Kannatey-Asibo E (1992) Accoustic emission from plastic deformation of a pure single crystal. J Appl Phys 72:1812–1820

  • Clarke G, Landes J (1979) Evaluation of the J integral for the compact specimen. J Test Evalu 7:264–269

    Article  Google Scholar 

  • Cuadra J, Vanniamparambil PA, Servansky D, Bartoli I, Kontsos A (2015) Acoustic emission source modeling using a data-driven approach. J Sound Vib 341:222–236

    Article  Google Scholar 

  • Döll W (1984) Kinetics of crack tip craze zone before and during fracture. Polym Eng Sci 24:798–808

    Article  Google Scholar 

  • Ernst H, Paris P, Rossow M, Hutchinson J (1979) Analysis of load-displacement relationship to determine J–R curve and tearing instability material properties. Fract Mech ASTM STP 677:581–599

    Article  Google Scholar 

  • Feih S (2006) Development of a user element in ABAQUS for modelling of cohesive laws in composite structures. Risø National Laboratory, Roskilde (Denmark), p 52

  • Gain A, Carroll J, Paulino G, Lambros J (2011) A hybrid experimental/numerical technique to extract cohesive fracture properties for mode-I fracture of quasi-brittle materials. Int J Fract 169:113–131

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A Contain Papers Math Phys Character 221:163–198

    Google Scholar 

  • Gross SP, Fineberg J, Marder M, McCormick WD, Swinney HL (1993) Acoustic emissions from rapidly moving cracks. Phys Rev Lett 71:3162–3165

    Article  Google Scholar 

  • Hack JE, Chen SP, Srolovitz DJ (1989) A kinetic criterion for quasi-brittle fracture. Acta Metallurgica 37:1957–1970

    Article  Google Scholar 

  • Hora P, Črvená O, Uhnáková A, Machová A, Pelikán V (2013) Stress wave radiation from brittle crack extension by molecular dynamics and FEM. Appl Comput Mech 7:23–30

  • Hutchinson JW (1968) Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 16:13–31

  • Jungk JM, Boyce BL, Buchheit TE, Friedmann TA, Yang D, Gerberich WW (2006) Indentation fracture toughness and acoustic energy release in tetrahedral amorphous carbon diamond-like thin films. Acta Materialia 54:4043–4052

    Article  Google Scholar 

  • King R, Herrmann G, Kino GS (1981) Acoustic nondestructive evaluation of energy release rates in plane cracked solids. In: Proceedings of the DARPA/AFWAL review of progress in quantitative NDE, pp 38–43

  • Koslowski M, LeSar R, Thomson R (2004) Avalanches and scaling in plastic deformation. Phys Rev Lett 93:125502

  • Lamark TT, Chmelık F, Estrin Y, Luka P (2004) Cyclic deformation of a magnesium alloy investigated by the acoustic emission technique. J Alloys Compd 378:202–206

    Article  Google Scholar 

  • Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21:405–421

    Article  Google Scholar 

  • Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A (1991) Quasi-static fault growthand shear fracure energy in granite. Nature 350:39–42

    Article  Google Scholar 

  • Lou XY, Li M, Boger RK, Agnew SR, Wagoner RH (2007) Hardening evolution of AZ31B Mg sheet. Int J Plasticity 23:44–86

    Article  Google Scholar 

  • Mathis K, Chmelık F, Janecek M, Hadzima B, Trojanova Z, Luka P (2006) Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique. Acta Materialia 54:5361–5366

    Article  Google Scholar 

  • Merkle JG, Corten HT (1974) A J integral analysis for the compact specimen, considering axial force as well as bending effects. J Press Vessel Technol 96:286–292

    Article  Google Scholar 

  • Miguel M-C, Vespignani A, Zapperi S, Weiss§ J, Grasso J-R (2001) Intermittent dislocation flow in viscoplastic deformation. Nature 410:667–671

    Article  Google Scholar 

  • Moosbrugger C (2002) Atlas of stress-strain curves. ASM International, Materials Park

    Google Scholar 

  • Muralidhara S, Prasad RB, Singh R (2013) Analysis of acoustic emission data to estimate true fracture energy of plain concrete. Curr Sci 105:1213–1216

    Google Scholar 

  • Nguyen O, Repetto EA, Ortiz M, Radovitzky RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110:351–369

    Article  Google Scholar 

  • Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets. Int J Fract 90:153–174

    Article  Google Scholar 

  • Parks DM (1977) The virtual crack extension method for nonlinear material behavior. Comput Methods Appl Mech Eng 12:353–364

    Article  Google Scholar 

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Amsterdam

    Google Scholar 

  • Rice JR (1965) An examination of the fracture mechanics energy balance from the point of view of continuum mechanics, ICF1, Japan

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  • Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12

    Article  Google Scholar 

  • Richeton T, Dobron P, Chmelik F, Weiss J, Louchet F (2006) On the critical character of plasticity in metallic single crystals. Mater Sci Eng A 424:190–195

    Article  Google Scholar 

  • Sause MGR, Müller T, Horoschenkoff A, Horn S (2012) Quantification of failure mechanisms in Mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos Sci Technol 72:167–174

    Article  Google Scholar 

  • Sause MR, Richler S (2015) Finite element modelling of cracks as acoustic emission sources. J Nondestruct Eval 34:1–13

    Article  Google Scholar 

  • Sharon E, Gross SP, Fineberg J (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76:2117–2120

    Article  Google Scholar 

  • Shen B, Paulino GH (2011) Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 51:143–163

    Article  Google Scholar 

  • Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30:79–102

    Google Scholar 

  • Uhnáková A, Machová A, Hora P, Červ J, Kroupa T (2010) Stress wave radiation from the cleavage crack extension in 3D bcc iron crystals. Comput Mater Sci 50:678–685

    Article  Google Scholar 

  • van Bohemen SMC, Sietsma J, Hermans MJM, Richardson IM (2003) Kinetics of the martensitic transformation in low-alloy steel studied by means of acoustic emission. Acta Materialia 51:4183–4196

    Article  Google Scholar 

  • Vanniamparambil PA, Guclu U, Kontsos A (2015) Identification of crack initiation in aluminum alloys using acoustic emission. Exp Mech 55:837–850

    Article  Google Scholar 

  • Wisner B, Cabal M, Vanniamparambil PA, Hochhalter J, Leser WP, Kontsos A (2015) In situ microscopic investigation to validate acoustic emission monitoring. Exp Mech 55:1705–1715

    Article  Google Scholar 

  • Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int J Solids Struct 46:31–51

    Article  Google Scholar 

Download references

Acknowledgments

The results reported here were obtained by using computational resources supported by Drexel’s University Research Computing Facility. This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1002809. In addition, A. Kontsos and I. Bartoli acknowledge the financial support received by the Office of Naval Research, Award N00014-13-1-0143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kontsos.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuadra, J.A., Baxevanakis, K.P., Mazzotti, M. et al. Energy dissipation via acoustic emission in ductile crack initiation. Int J Fract 199, 89–104 (2016). https://doi.org/10.1007/s10704-016-0096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0096-8

Keywords