International Journal of Fracture

, Volume 191, Issue 1–2, pp 191–213 | Cite as

Fracture mechanics of shape memory alloys: review and perspectives

  • T. BaxevanisEmail author
  • D. C. Lagoudas
Special Invited Article Celebrating IJF at 50


Shape memory alloys (SMAs) are intermetallic alloys displaying recoverable strains that can be an order of magnitude greater than in traditional alloys due to their capacity to undergo a thermal and/or stress-induced martensitic phase transformation. Since their discovery, the SMA industry has been dominated by products for biomedical applications with geometrically small feature sizes, especially endovascular stents. For such products the technological importance of fracture mechanics is limited, with the emphasis being placed on preventing crack nucleation rather than controlling crack growth. However, the successful integration of SMAs into commercial actuation, energy absorption, and vibration damping applications requires understanding and practice of fracture mechanics concepts in SMAs. The fracture response of SMAs is rather complex owing to the reversibility of phase transformation, detwinning and reorientation of martensitic variants, the possibility of dislocation and transformation-induced plasticity, and the strong thermomechanical coupling. Large-scale phase transformation under actuation loading paths, i.e., combined thermo-mechanical loading, and the associated configuration dependence complicate the phenomenon even further and question the applicability of single parameter fracture mechanics theories. Here, the existing knowledge base on the fracture mechanics of SMAs under mechanical loading is reviewed and recent developments in actuation-induced SMA fracture are presented, in terms of the micro-mechanisms of fracture, near-tip fracture environments, fracture criteria, and fracture toughness properties.


Shape memory alloys Fracture mechanics Phase transformation Finite element analysis 



This material is based upon work supported by the National Science Foundation under Grant Numbers CMMI-1301139 and DMR-0844082.

Supplementary material

Supplementary material 1 (mp4 5239 KB)

Supplementary material 2 (mp4 883 KB)

Supplementary material 3 (mp4 2477 KB)


  1. Baxevanis T, Chemisky Y, Lagoudas D (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21. doi: 10.1088/0964-1726/21/9/094012
  2. Baxevanis T, Lagoudas D (2012) A mode I fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175(2):151–166CrossRefGoogle Scholar
  3. Baxevanis T, Landis C, Lagoudas D (2014a) On the effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech Trans ASME 81(10). doi: 10.1115/1.4028191
  4. Baxevanis T, Landis C, Lagoudas D (2014b) On the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech Trans ASME 81(4). doi: 10.1115/1.4025139
  5. Baxevanis T, Parrinello A, Lagoudas D (2013) On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys. Int J Plast 50:158–169CrossRefGoogle Scholar
  6. Baxevanis T, Parrinello A, Lagoudas D (2015) On the driving force for crack growth during thermal actuation of shape memory alloys. SubmittedGoogle Scholar
  7. Birman V (1998) On mode I fracture of shape memory alloy plates. Smart Mater Struct 7:433–437CrossRefGoogle Scholar
  8. Budniansky B, Hutchinson J, Lambropoulos J (1983) Continuum theory of dilatant transformation toughening in ceramics. Int J Solids Struct 19:337–355CrossRefGoogle Scholar
  9. Carka D, Landis C (2011) On the path-dependence of the \({J}\)-integral near a stationary crack in an elastic-plastic material. J Appl Mech Trans ASME 78. doi: 10.1115/1.4001748
  10. Creuziger A, Bartol L, Gall K, Crone W (2008) Fracture in single crystal NiTi. J Mech Phys Solids 56:2896–2905CrossRefGoogle Scholar
  11. Daymond M, Young ML, Almer J, Dunand D (2007) Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi. Acta Mater 55:3929–3942CrossRefGoogle Scholar
  12. Desindes S, Daly S (2010) The small-scale yielding of shape memory alloys under mode III fracture. Int J Solids Struct 47:730–737CrossRefGoogle Scholar
  13. Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275, 149–160Google Scholar
  14. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104CrossRefGoogle Scholar
  15. E1820 (2013) Standard test method for measurement of fracture toughness. ASTM International, West ConshohockenGoogle Scholar
  16. Freed Y, Banks-Sills L (2007) Crack growth resistance of shape memory alloys by means of a cohesive zone model. J Mech Phys Solids 55:2157–2180CrossRefGoogle Scholar
  17. Gall K, Yang N, Sehitoglu H, Chumlyakov Y (2001) Fracture of precipitated NiTi shape memory alloys. Int J Fract 109:189–207CrossRefGoogle Scholar
  18. Gollerthan S, Young M, Neuking K, Ramamurty U, Eggeler G (2009a) Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic niti shape memory alloys. Acta Mater 57(19):5892–5897CrossRefGoogle Scholar
  19. Gollerthan S, Young ML, Baruj A, Frenzel J, Schmahl W, Eggeler G (2009b) Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater 57:1015–1025CrossRefGoogle Scholar
  20. Hartl D, Lagoudas D (2007) Aerospace applications of shape memory alloys. In: Proceedings of the institution of mechanical engineers, Part G. J Aerosp Eng SAGE, pp 535–552Google Scholar
  21. Hartl D, Lagoudas D, Calkins F (2011) Advanced methods for the analysis, design, and optimization of sma-based aerostructures. Smart Mater Struct 20(9). doi: 10.1088/0964-1726/20/9/094006
  22. Hazar S, Zaki W, Moumni Z, Anlas G (2015) Modeling of steady-state crack growth in shape memory alloys using a stationary method. Int J Plast 67:26–38CrossRefGoogle Scholar
  23. He Y, Sun Q (2011) On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. Int J Solids Struct 48(11–12):1688–1695CrossRefGoogle Scholar
  24. He Y, Yin H, Zhou R, Sun Q (2010) Ambient effect on damping peak of NiTi shape memory alloy. Mater Lett 64(13):1483–1486CrossRefGoogle Scholar
  25. Holtz R, Sadananda K, Imam M (1999) Fatigue thresholds of NiTi alloy near the shape memory transition temperature. Int J Fatigue 21:S137–S145CrossRefGoogle Scholar
  26. Hutchinson J (1968) Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids 16:13–31Google Scholar
  27. Hutchinson J (1983) Fundamentals of the phenomenological theory of nonlinear fracture mechanics. J Appl Mech Trans ASME 50(4B):1042–1051CrossRefGoogle Scholar
  28. Irwin G (1968) Linear fracture mechanics, fracture transition, and fracture control. Eng Fract Mech 1(2):241–257CrossRefGoogle Scholar
  29. Jape S, Baxevanis T, Lagoudas D (2014) Stable crack growth during actuation in shape memory alloys, vol 9058. In: Proceedings of SPIE—the international society for optical engineering. doi: 10.1117/12.2048590
  30. Jape S, Baxevanis T, Lagoudas D (2015) Actuation-induced toughness enhancement in shape memory alloys. Under preparationGoogle Scholar
  31. Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143. doi: 10.1115/1.1595677 CrossRefGoogle Scholar
  32. Lagoudas D (ed) (2008) Shape memory alloys: modelling and engineering applications. Springer, New YorkGoogle Scholar
  33. Lagoudas D, Bo Z, Qidwai M (1996) A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mech Compos Mater Struct 4:153–179CrossRefGoogle Scholar
  34. Lagoudas D, Entchev P, Popov P, Patoor E, Brinson L, Gao X (2006) Shape memory alloys. Part II: modeling of polycrystals. Mech Mater 38:430–462CrossRefGoogle Scholar
  35. Lagoudas D, Hartl D, Chemisky Y, Machado L, Popov P (2012) Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plast 32–33, 158–183Google Scholar
  36. Lexcellent C, Laydi MR, Taillebot V (2011a) Analytical prediction of the phase transformation onset zone at a crack tip of a shape memory alloy exhibiting asymmetry between tension and compression. Int J Fract 169(1):1–13CrossRefGoogle Scholar
  37. Lexcellent C, Laydi R, Taillebot V (2011b) Impact of the choice of a 3D thermomechanical model for shape memory alloys on the fracture and the delamination predictions. In: Procedia engineering, vol 10. pp 2232–2237Google Scholar
  38. Lexcellent C, Thiebaud F (2008) Determination of the phase transformation zone at a crack tip in a shape memory alloy exhibiting asymmetry between tension and compression. Scr Mater 59:321–323CrossRefGoogle Scholar
  39. Loughran G, Shield T, Leo P (2003) Fracture of shape memory CuAlNi single crystals. Int J Solids Struct 40(2):271–294CrossRefGoogle Scholar
  40. Machado L (2007) Shape memory alloys for vibration isolation and damping. Ph.D. thesis, Texas A&M University, College StationGoogle Scholar
  41. Maletta C (2012) A novel fracture mechanics approach for shape memory alloys with trilinear stress–strain behavior. Int J Fract 177(1):39–51CrossRefGoogle Scholar
  42. Maletta C, Furgiuele F (2010) Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel–titanium alloys. Acta Mater 58:92–101CrossRefGoogle Scholar
  43. Maletta C, Furgiuele F (2011) Fracture control parameters for NiTi based shape memory alloys. Int J Solids Struct 48:1658–1664CrossRefGoogle Scholar
  44. Maletta C, Sgambitterra E, Furgiuele F (2013) Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatigue Fract Eng Mater Struct 36(9):903–912CrossRefGoogle Scholar
  45. Maletta C, Young M (2011) Stress-induced martensite in front of crack tips in NiTi shape memory alloys: modeling versus experiments. J Mater Eng Perform 20(4–5):597–604CrossRefGoogle Scholar
  46. McMeeking R, Evans A (1982) Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc 65:242–246CrossRefGoogle Scholar
  47. Miyazaki S (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, LondonGoogle Scholar
  48. Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelastic characteristics of Ti–Ni alloys. Metall Trans A 17A(1):115–120CrossRefGoogle Scholar
  49. Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens Actuator A Phys 158(1):149–160CrossRefGoogle Scholar
  50. Otsuka K, Wayman C (eds) (1999) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  51. Parrinello A, Baxevanis T, Lagoudas D (2013) On the energy release rate during global thermo-mechanically-induced phase transformation in shape memory alloys, vol. 2 of ASME 2013 conference on smart materials, adaptive structures and intelligent systems, SMASIS 2013. doi: 10.1115/SMASIS2013-3187
  52. Patoor E, Lagoudas D, Entchev PB, Brinson L, Gao X (2006) Shape memory alloys. Part I: general properties and modeling of single crystals. Mech Mater 38:391–429CrossRefGoogle Scholar
  53. Pelton A, DiCello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade nitinol wire. Minim Invas Ther Allied Technol 9(2):107–118CrossRefGoogle Scholar
  54. Petrini L, Migliavacca F (2011)Biomedical applications of shape memory alloys. J Metall. doi: 10.1155/2011/501483
  55. Prahlad H, Chopra I (2003) Development of a strain-rate dependent model for uniaxial loading of SMA wires. J Intell Mater Syst Struct 14(14):429–442CrossRefGoogle Scholar
  56. Rice J (1967) Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear. ASME J Appl Mech 34:287–298CrossRefGoogle Scholar
  57. Rice J (1968) A path independent integral and approximate analysis of strain concentration by notches and cracks. ASME J Appl Mech 35:379–386CrossRefGoogle Scholar
  58. Rice J, Rosengren G (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12CrossRefGoogle Scholar
  59. Robertson S, Mehta A, Pelton A, Ritchie R (2007a) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater 55(18):6198–6207CrossRefGoogle Scholar
  60. Robertson S, Metha A, Pelton A, Ritchie R (2007b) Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray micro-diffraction analysis. Acta Mater 55:6198–6207CrossRefGoogle Scholar
  61. Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of nitinol. Int Mater Rev 57(1):1–36CrossRefGoogle Scholar
  62. Robertson S, Ritchie R (2007) In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4):700–709CrossRefGoogle Scholar
  63. Robertson S, Ritchie R (2008) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic nitinol tube. J Biomed Mater Res B 84(1):26–33CrossRefGoogle Scholar
  64. Rybicki E, Kanninen M (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938CrossRefGoogle Scholar
  65. Shaw J, Kyriakides S (1995) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. J Mech Phys Solids 43(1):1243–1281CrossRefGoogle Scholar
  66. Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot 34(4):285–294CrossRefGoogle Scholar
  67. Stam G, van der Giessen E (1995) Effect of reversible phase transformations on crack growth. Mech Mater 21:51–71CrossRefGoogle Scholar
  68. Stoeckel D, Pelton A, Duerig T (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14(2):292–301CrossRefGoogle Scholar
  69. Vaidyanathan R, Dunand D, Ramamurty U (2000) Fatigue crack-growth in shape-memory NiTi and NiTi–TiC composites. Mater Sci Engi A 289(1–2):208–216CrossRefGoogle Scholar
  70. Vasko G, Leo P, Shield T (2002) Prediction and observation of crack tip microstructure in shape memory CuAlNi single crystals. J Mech Phys Solids 50(9):1843–1867CrossRefGoogle Scholar
  71. Wang G (2007a) Effect of martensite transformation on fracture behavior of shape memory alloy NiTi in a notched specimen. Int J Fract 146:93–104CrossRefGoogle Scholar
  72. Wang G (2007b) A finite element analysis of evolution of stress–strain and martensite transformation in front of a notch in shape memory alloy NiTi. Mater Sci Eng A 460–461Google Scholar
  73. Wang X, Wang Y, Baruj A, Eggeler G, Yue Z (2005) On the formation of martensite in front of cracks in pseudoelastic shape memory alloys. Mater Sci Eng A 394:393–398CrossRefGoogle Scholar
  74. Xie D, Biggers S (2006) Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem Anal Des 42:977–984CrossRefGoogle Scholar
  75. Xiong F, Liu Y (2007) Effect of stress-induced martensitic transformation on the crack tip stress-intensity factor in Ni–Mn–Ga shape memory alloy. Acta Mater 55:5621–5629CrossRefGoogle Scholar
  76. Yan W, Mai Y (2006) Theoretical consideration on the fracture of shape memory alloys, vol 127. Springer, NetherlandsGoogle Scholar
  77. Yan Y, Yin H, Sun Q, Huo Y (2012) Rate dependence of temperature fields and energy dissipations in non-static pseudoelasticity. Contin Mech Thermodyn 24(4–6):675–695Google Scholar
  78. Yi S, Gao S (2000) Fracture toughening mechanism of shape memory alloys due to martensite transformation. Int J Solids Struct 37:5315–5327CrossRefGoogle Scholar
  79. Yi S, Gao S, Shen S (2001) Fracture toughening mechanism of shape memory alloys under mixed-mode loading due to martensite transformation. Int J Solids Struct 38:4463–4476CrossRefGoogle Scholar
  80. Yin H, Yan Y, Huo Y, Sun Q (2013) Rate dependent damping of single crystal CuAlNi shape memory alloy. Mater Lett 109:287–290CrossRefGoogle Scholar
  81. Yoon S, Yeo D (2008) Experimental investigation of thermo-mechanical behaviors in Ni–Ti shape memory alloy. J Intell Mater Syst Struct 19(3):283–289CrossRefGoogle Scholar
  82. Young M, Gollerthan S, Baruj A, Frenzel J, Schmahl W, Eggeler G (2013) Strain mapping of crack extension in pseudoelastic niti shape memory alloys during static loading. Acta Mater 61(15):5800–5806CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Aerospace Engineering & Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations