Skip to main content
Log in

A self-affine geometrical model of dynamic RT-PMMA fractures: implications for fracture energy measurements

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Profilometric imaging of fracture surfaces of rubber toughened polymer has been performed at two different resolutions (a) at large scales [10 \(\upmu \)m–25 mm] using an opto-mechanical profilometer and (b) at small scales [0.195 \(\upmu \)m–0.48 mm] using an interferometric optical microscope. We introduced a self-affine geometrical model using two parameters: the Hurst exponent and the topothesy. We showed that for rubber toughened materials the approximation of the created surface by a mean flat plane leads to a poor estimation of the dynamic fracture energy \(G_{Idc}\). The description of the created rough fracture surface by a self-affine model is shown to provide a significantly better approximation. A new and original geometrical method is introduced to estimate self-affine parameters: the 3D surface scaling method. Hurst exponents are shown to be unique, \(\chi =0.6\pm 0.1\) for the different fracture zones and measurement scales. Topothesy ratios indicate a significant difference of fracture surface roughness amplitude depending on the observation resolution when the detrending technique is not correctly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The beginning of a creep crack growth regime is considered herein as a crack arrest.

References

  • Barabasi A-L, Stanley HE (1995) Fractal concepts in surface growth. Press Syndicate of the University of Cambridge, Cambridge

    Book  Google Scholar 

  • Bouchaud JP, Bouchaud E, Lapasset G, Planès J (1993) Models of fractal cracks. Phys Rev Lett 71:2240–2243

    Article  Google Scholar 

  • Bouchaud E, Lapasset G, Planès J, Naveos S (1995) Statistics of branched fracture surfaces. Phys Rev B 48(5):2917–2928

    Article  Google Scholar 

  • Bouchaud E (1997) Scaling properties of cracks. J Phys Condens Matter 9(21):4319–4344

    Article  Google Scholar 

  • Candela T, Renard F, Klinger Y, Mair K, Schmittbuhl J, Brodsky EE (2012) Roughness of fault surfaces over nine decades of length scales. J Geophys Res B Solid Earth 117:8

    Article  Google Scholar 

  • Candela T, Renard F, Bouchon M, Brouste A, Marsan D, Schmittbuhl J, Voisin C (2009) Characterization of fault roughness at various scales: implications of three-dimensional high resolution topography measurements. Pure Appl Geophys 166:1817–1851

    Article  Google Scholar 

  • Deumié C, Richier R, Dumas P, Amra C (1996) Multiscale roughness in optical multilayers: atomic force microscopy and light scattering. Appl Opt 35(28):5583–5594

    Article  Google Scholar 

  • Doll W (1976) Application of an energy balance and an energy method to dynamic crack propagation. J Appl Polym Sci 12(4):595–605

    Google Scholar 

  • Family F, Vicsek T (1985) Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J Phys A Math Gen 18(2):L75–L81

    Article  Google Scholar 

  • Feder J (1988) Fractals. Plenum Press, New York

    Book  Google Scholar 

  • Fond C, Schirrer R (2001) Dynamic Fracture Surface Energy and Branching Instabilities During Rapid Crack Propagation in Rubber Toughened PMMA. Notes au C R A S Ser IIb 329(3):195–200

    Google Scholar 

  • Guerrero C, Reyes E, Gonzalez V (2002) Fracture surface of plastic materials: the roughness exponent. Polymer 43(25):6683–6693

    Article  Google Scholar 

  • Hinojosa M, Gonzalez V, Sanchez J, Ortiz U (2004) Scaling properties of the fracture surfaces of a crystalline polymer. Polymer 45(14):4828–4836

    Article  Google Scholar 

  • Kobayashi A, Ohtani N, Munemura M (1980) Dynamic stress intensity factors during viscoelastic crack propagation at various strain rates. J Appl Polym Sci 25(12):2789–2793

    Article  Google Scholar 

  • Kopp J-B, Lin J, Schmittbuhl J, Fond C (2013) Correlation between the dynamic fracture surface energy GID and the amount of created surface. In: 13th international conference on fracture 2013, ICF 2013, 5, pp 4048–4056

  • Kopp J-B, Lin J, Schmittbuhl J, Fond C (2014a) Longitudinal dynamic fracture of polymer pipes. Eur J Environ Civil Eng 18(10):1097–1105

  • Kopp J-B, Schmittbuhl J, Noel O, Lin J, Fond C (2014b) Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface. Eng Fract Mech 126:178–189

  • Lapique F, Meakin P, Feder J, Jassang T (2002) Self-affine fractal scaling in fracture surfaces generated in ethylene and propylene polymers and copolymers. J Appl Polym Sci 86(4):973–983

    Article  Google Scholar 

  • Lopez JM, Schmittbuhl J (1998) Anomalous scaling of fracture surfaces. Phys Rev E 57(6):6405–6408

    Article  Google Scholar 

  • Maloy KJ, Hansen A, Hinrichsen EL, Roux S (1992) Experimental measurements of the roughness of brittle cracks. Phys Rev Lett 68:213–215

    Article  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W.H.Freeman and Company, NewYork

    Google Scholar 

  • Mandelbrot BB, Passoja DE, Paulay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722

    Article  Google Scholar 

  • Meakin P (1998) Fractals: scaling and growth far from equilibrium. Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  • Morel S, Schmittbuhl J, Lopez JM, Valentin G (1998) Anomalous roughening of wood fractured surfaces. Phys Rev E 58:6999–7005

    Article  Google Scholar 

  • Mourot G, Morel S, Valentin G (2002) Comportement courbe-R d’un matériau quasi-fragile (le bois): influence de la forme des specimens d’essai. Colloque MATERIAUX

  • Nilsson F (1972) Dynamic stress-intensity factors for finite strip problems. Int J Fract 8(4):403–411

    Article  Google Scholar 

  • Osovski S, Srivastava A, Ponson L, Bouchaud E, Tvergaard V, Ravi-Chandar K, Needleman A (2015) The effect of loading rate on ductile fracture toughness and fracture surface roughness. J Mech Phys Solids 76:20–46

    Article  Google Scholar 

  • Ponson L, Bonamy D, Auradou H, Mourot G, Morel S, Bouchaud E, Guillot C, Hulin JP (1992) Anisotropic self-affine properties of experimental fracture surfaces. Int J fract 140(1–4):27–37

    Google Scholar 

  • Scheibert J, Guerra C, Celarie F, Dalmas D, Bonamy D (2010) Brittle-quasibrittle transition in dynamic fracture: an energetic signature. Phys Rev Lett 104:045501-1–045501-4

    Article  Google Scholar 

  • Schmittbuhl J, Gentier S, Roux S (1993) Field measurements of the roughness of fault surfaces. Geophys Res Lett 20(8):639–641

    Article  Google Scholar 

  • Schmittbuhl J, Schmitt F, Scholz C (1995a) Scaling invariance of crack surfaces. J Geophys Res 100(B4):5953–5973

    Article  Google Scholar 

  • Schmittbuhl J, Vilotte J-P, Roux S (1995) Reliability of self-affine measurements. Phys Rev E 51(1):131–147

    Article  Google Scholar 

  • Schmittbuhl J, Chambon G, Hansen A, Bouchon M (2007) Are stress distributions along faults the signature of asperity squeeze. Geophys Res Lett 33:L-13307

    Article  Google Scholar 

  • Schmittbuhl J, Steyer A, Jouniaux L, Toussaint R (2008) Fracture morphology and viscous transport. Int J Rock Mech Min Sci 45(3):422–430

    Article  Google Scholar 

  • Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397:333–335

    Article  Google Scholar 

  • Simonsen I, Hansen A, Nes OM (1998) Determination of the Hurst exponent by use of wavelet transforms. Phys Rev E 58:2779–2787

    Article  Google Scholar 

  • Simonsen I, Vandembroucq D, Roux S (2000) Wave scattering from self-affine surfaces. Phys Rev E 61(5):5914–5917

    Article  Google Scholar 

  • Srivastava A, Ponson L, Osovski S, Bouchaud E, Tvergaard V, Needleman A (2014) Effect of inclusion density on ductile fracture toughness and roughness. J Mech Phys Solids 63(1):62–79

    Article  Google Scholar 

  • Williams JG (1972) Visco-elastic and thermal effects on crack growth in PMMA. Int J Fract 8(4):393–401

    Google Scholar 

  • Yoffe EH (1951) The moving griffith crack. Philos Mag 42:739–750

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of “Agence Nationale de la Recherche” and especially the collaborators of “Carenco”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoit Kopp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopp, JB., Schmittbuhl, J., Noel, O. et al. A self-affine geometrical model of dynamic RT-PMMA fractures: implications for fracture energy measurements. Int J Fract 193, 141–152 (2015). https://doi.org/10.1007/s10704-015-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0025-2

Keywords

Navigation