Skip to main content
Log in

Fracture characterization of high-density polyethylene pipe materials using the \(J\)-integral and the essential work of fracture

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, fracture mechanics concepts are reviewed and their relevance to examine the toughness of highly deformable materials such as high-density polyethylene (HDPE) pipe materials is discussed. Using two different specimen configurations (single edge notched bending and compact tension), it was found that the \(J-R\) approach is unable to give pertinent indications on fracture toughness of HDPE. Alternatively, applying the essential work of fracture approach to double edge notched tension specimen, seems a more appropriate way to measure the fracture strength of HDPE and therefore to analyze the fracture process of such materials. Nevertheless, the severe necking occurring at the crack tip and in the plastic zone makes difficult the crack growth measurement, which clearly depends on the strain state and on the stress triaxiality level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Allwood WJ, Beech SH (1993) The development of the ‘notched pipe test’ for the assessment of the slow crack growth resistance of polyethylene pipe. Const Build Mater 7:157–162

    Article  Google Scholar 

  • ASTM Standards (1997) Standard test method for plane-strain fracture toughness of, metallic materials. ASTM-E399-90

  • Ayoub G, Zaïri F, Fréderix C, Gloaguen JM, Naït-Abdelaziz M, Seguela R, Lefebvre JM (2011) Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: experiments and constitutive modelling. Inter J Plast 27: 492–511

    Article  CAS  Google Scholar 

  • Barany T, Czigany T, Karger-Kocsis J (2010) Application of the essential work of fracture (EWF) concept for polymers, related blends and composites: a review. Prog. Polym Sci 35:1257–1287

    Article  CAS  Google Scholar 

  • Beech SH, Channell AD, Rose LJ (1995) Slow crack growth performance assessment in polyethylene pipe. In: Proceedings of the 14th international plastic fuel gas pipe symposium, American Gas Association, San Diego

  • Begley JA, Landes JD (1972) The J integral as a fracture criterion. ASTM 514:1–20

    Google Scholar 

  • Bernal C, Montenegro HL, Frontini P (2003) Failure prediction analysis for polyethylene flawed pipes. Eng Fract Mech 70:2149–2162

    Article  Google Scholar 

  • Boot JC, Guan ZW, Toropova IL (1996) Structural design of thin walled polyethylene pipe linings for water mains. Plast Rub Comp Proc Appl 25:174–179

    CAS  Google Scholar 

  • Broberg KB (1968) Critical review of some theories in fracture mechanics. Int J Fract 4:11–18

    Article  Google Scholar 

  • Chan MKV, Williams JG (1983) J-integral studies of crack initiation of a tough high density polyethylene. Int J Fract 19: 145–159

    Google Scholar 

  • Chan WYF, Williams JG (1994) Determination of the fracture toughness of polymeric films by the essential work method. Polym 35:1666–1672

    Article  CAS  Google Scholar 

  • Cherepanov GP (1968) Cracks in solids. Inter J Solids Struct 4:811–831

    Article  Google Scholar 

  • Clarke GA, Landes JD (1979) Evaluation of the J integral for the compact specimen. J Test Eval 7:264–269

    Article  Google Scholar 

  • Haward RN, Young RJ (1997) The physics of glassy polymers. Chapman & Hall, London

    Book  Google Scholar 

  • Hill R (1952) On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solids 1:19–30

    Article  Google Scholar 

  • Karger-Kocsis J, Barany T (2002) Plane-stress fracture behavior of syndiotactic polypropylenes of various crystallinity as assessed by the essential work of fracture method. Polym Eng Sci 42:1410–1419

    Article  CAS  Google Scholar 

  • Karger-Kocsis J, Ferrer-Balas D (2001) On the plane-strain essential work of fracture of polymer sheets. Polym Bull 46:507–512

    Article  CAS  Google Scholar 

  • Karger-Kocsis J, Czigany T, Moskala EJ (1997) Thickness dependence of work of fracture parameters of an amorphous copolyester. Polymer 38:4587–4593

    Article  CAS  Google Scholar 

  • Kwon HJ, Jar PYB (2007) New energy partitioning approach to the measurement of plane-strain fracture toughness of high-density polyethylene based on the concept of essential work of fracture. Eng Fract Mech 74:2471–2480

    Article  Google Scholar 

  • Levita G, Parisi L, Mcloughlin S (1996) Essential work of fracture in polymer films. J Mater Sci 31:1545–1553

    Article  CAS  Google Scholar 

  • Mai YW, Cotterell B (1986) On the essential work of ductile fracture in polymers. Int J Fract 32:105–125

    Article  CAS  Google Scholar 

  • Mai YW, Cotterell B, Horlyck R, Vigna G (1987) Essential work of plane stress ductile fracture of linear polyethylenes. Polym Eng Sci 27:804–809

    Article  CAS  Google Scholar 

  • Mai YW, Wong SC, Chen XH (1999) Application of fracture mechanics for characterization of toughness of polymer blends. In: Paul DR, Bucknall CB (eds) Polymer blends: performance, vol 2. Wiley, New York, pp 17–58

    Google Scholar 

  • Marshall GP, Culver LE, Williams JG (1970) Craze growth in polymethylmethacrylate: a fracture mechanics approach. Proc R Soc Lond A 319:165–187

    Article  CAS  Google Scholar 

  • Pardoen T, Marchal Y, Delannay F (2002) Essential work of fracture compared to fracture mechanics—towards a thickness independent plane stress toughness. Eng Fract Mech 69: 617–631

    Article  Google Scholar 

  • Paton CA, Hashemi S (1992) Plane-stress essential work of ductile fracture for polycarbonate. J Mater Sci 27:2279–2290

    Article  CAS  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  • Rice JR, Paris PC, Merkle JG (1972) Some further results of J-integral analysis and estimates. ASTM 536:231–243

    Google Scholar 

  • Saleemi AS, Nairn JA (1990) Plane-strain essential work of fracture as a measure of the fracture toughness of ductile polymers. Polym Eng Sci 30:211–218

    Article  CAS  Google Scholar 

  • Sharobeam MH, Landes JD (1991) The load separation criterion and methodology in ductile fracture mechanics. Inter J Fract 47:81–104

    Article  Google Scholar 

  • Steenbrink AC, van der Giessen E, Wu PD (1997) Void growth in glassy polymers. J Mech Phys Solids 45:405–437

    Article  CAS  Google Scholar 

  • Sumpter JDG (1987) J\(_{c}\) determination for shallow notch welded bend specimens. Fat Fract Eng Mater Struct 10:479–493

    Article  Google Scholar 

  • Sumpter JDG, Turner CE (1973) Application of J to elastic–plastic materials. Int J Fract 9:320–321

    Article  Google Scholar 

  • Tonyali K, Brown HR (1986) On the applicability of linear elastic fracture mechanics to environmental stress cracking of low-density polyethylene. J Mater Sci 21:3116–3124

    Article  CAS  Google Scholar 

  • Williams JG (1984) Fracture mechanics of polymers. Ellis Horwood, Chichester

    Google Scholar 

  • Williams JG, Rink M (2007) The standardisation of the EWF test. Eng Fract Mech 74:1009–1017

    Article  Google Scholar 

  • Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre JM (2008) Modelling of the elasto-viscoplastic damage behaviour of glassy polymers. Inter J Plast 24:945–965

    Google Scholar 

  • Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre JM (2011) A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. Inter J Plast 27:25–51

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank STPM CHIALI for providing the HDPE pipes. They also gratefully acknowledge the International Campus on Safety and Intermodality in Transportation for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naït-Abdelaziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmeguenni, M., Naït-Abdelaziz, M., Zaïri, F. et al. Fracture characterization of high-density polyethylene pipe materials using the \(J\)-integral and the essential work of fracture. Int J Fract 183, 119–133 (2013). https://doi.org/10.1007/s10704-013-9848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-013-9848-x

Keywords

Navigation