Skip to main content
Log in

Experimental Data Highlighting the Role of Surface Fracture Energy in Quasi-Static Confined Comminution

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Since the pioneering work of Griffith, Linear Elastic Fracture Mechanics has been widely experimentally validated and successfully developed in solid mechanics modeling. However, recent theoretical models applying the energy balance found in Griffith theory specifically for quasi-static confined comminution have until now not been systematically confronted to experiments. In this study, we analyze data of compression tests on crushable sand, where grain breakage has been triggered by flooding the initially dry material at constant stresses. We consider a partition of the dissipation between surface fracture energy and the rearrangement of fragments and grains surrounding crushed particles. Our results show that the role of the surface fracture energy is stressdependent and that its influence becomes less significant at high stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM C204-11 (2011). Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus, Annual Book of Standards Vol. 04.01

  • Ashby, M., Jones, D. (2006). Engineering Materials 1. 3rd edition, Elsevier. Oxford. 424 p.

  • Åström J.A., Herrmann H.J. (1998) Fragmentation of grains in a two dimensional packing, Eur. Phys. J. B 5: 551–554

    Google Scholar 

  • Atkinson , B. K. (1982) Subcritical crack growth in geological materials. J. Geophys. Res. 89(B6): 4077–4114

    Article  Google Scholar 

  • Biarez J., Hicher P.Y. (1997) Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires. Revue Françse de Génie Civil 1(4): 607–631

    Article  Google Scholar 

  • Cundall P., Strack O. (1979) A discrete numerical model for granular assemblies, Géotechnique 29(1): 47–65

    Google Scholar 

  • Daouadji A., Hicher P-Y. (2010) An enhanced constitutive model for crushable granular materials. Int. J. Numer. Anal. Meth. Geomech. 34(6): 555–580

    Google Scholar 

  • Daouadji A., Hicher P-Y., Rahma A. (2001) An elastoplastic model for granular materials taking into account grain breakage. Eur. J. Mech. A-Solid. 20: 113–137

    Article  Google Scholar 

  • Einav I. (2007) Breakage mechanics- Part I: Theory. J. Mech. Phys. Solids 55(6): 1274–1297

    Article  CAS  Google Scholar 

  • Grady D. E. (1982) Local Inertial Effects in Dynamic Fragmentation”. Journal of Applied Physics 53: 322–325

    Article  Google Scholar 

  • Griffith A.A. (1921) The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221: 163–198

    Article  Google Scholar 

  • Hu W., Yin Z., Dano C., Hicher P.-Y. (2011) A constitutive model for granular materials considering grain breakage. Sci. China Tech. Sci. 54: 1–9

    Google Scholar 

  • Jandacka P., Hlavac L., Madr V., Sancer J., Stanek F. (2009) Measurement of specific fracture energy and surface tension of brittle materials in powder form. Int. J. Fract. 159: 103–110

    Article  CAS  Google Scholar 

  • Lee I., Coop M. (1995) The intrinsic behaviour of a decomposed granite soil. Géotechnique 45(1): 117–130

    Article  Google Scholar 

  • McDowell G. R., Amon A. (2000) The application of Weibull statistics to the fracture of soil particles. Soils Found. 40(5): 133–141

    Article  Google Scholar 

  • McDowell G. R., Bolton M. D., Roberston D. (1996) The fractal crushing of granular materials. J. Mech. Phys. Solids 44(12): 2079–2102

    Article  Google Scholar 

  • Muir Wood, D., Kikumoto, M., Russell, A.R. (2009). Particle crushing and deformation behaviour. Prediction and simulation methods for geohazard mitigation (eds F. Oka, A. Murakami, S. Kimoto), CRC Press, London.

  • Miura N., O-Hara S. (1979) Particle-crushing of a decomposed granite soil under shear stresses. Soils Found. 19(3): l–14

    Article  Google Scholar 

  • Nguyen G., Einav I. (2009) The energetics of cataclasis based on breakage mechanics. Pure Appl. Geophys. 166: 1693–1724

    Article  Google Scholar 

  • Nieto-Gamboa, C. (2011). Mechanical behavior of rockfill materials application to concrete face rockfill dams. Doctoral Thesis, Ecole Centrale Paris, France

  • Oldecop L., Alonso E. (2001) A model for rockfill compressibility. Geotechnique 51(2): 127–139

    Article  Google Scholar 

  • Oldecop L., Alonso E. (2007) Theoretical investigation of the time dependent behavior of rockfill, Géotechnique 57(3): 289–301

    Google Scholar 

  • Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino. S., Hicher, P-.Y (2013). The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data, submitted to Acta Mechanica

  • Pugno N. (2006) Dynamic Quantized Fracture Mechanics. Int. J. of Fracture 140: 159–168

    Article  CAS  Google Scholar 

  • Pugno N., Carpinteri A. (2008) On linear elastic fragmentation mechanics under hydrostatic compression. Int. J. Fract. 149: 113–117

    Article  Google Scholar 

  • Roscoe K., Schofield A., Thurairajah A. (1963) Yield of clays in states wetter than critical. Géotechnique 13(3): 211–240

    Article  Google Scholar 

  • Russell A. (2011) A compression line for soils with evolving particle and pore size distributions due to particle crushing. Géotechnique Letters 1: 5–9

    Article  Google Scholar 

  • Russell A., Khalili N. (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can. Geotech. J. 41(6): 1179–1192

    Article  Google Scholar 

  • Tsoungui O., Vallet D., Charmet J.C. (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105: 190–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ovalle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovalle, C., Dano, C. & Hicher, PY. Experimental Data Highlighting the Role of Surface Fracture Energy in Quasi-Static Confined Comminution. Int J Fract 182, 123–130 (2013). https://doi.org/10.1007/s10704-013-9833-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-013-9833-4

Keywords

Navigation