Cracking behavior of reinforced concrete beams: experiment and simulations on the numerical influence of the steel-concrete bond

Abstract

Experimental and numerical results are provided in this contribution to study the global and cracking behaviors of two reinforced concrete beams subjected to four point bending. Experimentally, the use of image correlation technique enables to obtain precise information concerning the cracking properties (spacing, cumulated, maximum and mean values of the opening). Numerically, two simulations are compared taking into account a bond model between steel and concrete or supposing a perfect relation between the two materials. In both cases, a good agreement is achieved between numerical and experimental results even if the introduction of the bond effects has a direct influence during the development of the cracks (better agreement during the “active” cracking phase).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. Au FTK, Bai ZZ (2007) two-dimensional nonlinear finite element analysis of monotonically and nonreversed cyclically loaded RC beams. Eng Struct 29:2921–2934

    Article  Google Scholar 

  2. Besnard G, Hild F, Roux S (2006) Finite element displacement field analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46:789–803

    Article  Google Scholar 

  3. Casanova A, Jason L, Davenne L (2012) Bond slip model for the simulation of reinforced concrete structures. Eng Struct 39:66–78

    Article  Google Scholar 

  4. Cast3m (2012) http://www-cast3m.cea.fr/

  5. Castel A, François R (2011) Modeling of steel and concrete strains between primary cracks for the prediction of cover-controlled cracking in RC beams. Eng Struct 33:3668–3675

    Article  Google Scholar 

  6. Clément JL (1987) Interface acier-béton et comportement des structures en béton armé- Caractérisation- Modélisation. PhD Thesis Université Paris 6

  7. Costa C, Pegon P, Arêde A, Castro J (2004) Implementation of the damage model in tension and compression with plasticity in Cast3M. JRC Report

  8. Daoud A (2003) Etudes expérimentales de la liaison entre l’acier et le béton autoplaçant - Contribution à la modélisation. PhD Thesis INSA Toulouse

  9. Dominguez N, Ibrahimbegovic A (2012) A non-linear thermodynamical model for steel-concrete bonding. Comput Struct 106–107:29–45

    Article  Google Scholar 

  10. Eligehausen R, Popov EP, Bertero VV (1983) Local bond stress - slip relationships of deformed bars under generalized excitations. Report \(\text{ n}^{\circ }\) UCB/EERC-83/23 University of California

  11. Eurocode 2 (2007) Calcul des structures en béton. NF-EN-1992

  12. Ferreira MDC, Venturini WS, Hild F (2011) On the analysis of notched concrete beams : from measurement with digital image correlation to identification with boundary element method of a cohesive model. Eng Fract Mech 78:71–84

    Article  Google Scholar 

  13. Harajli MH (1994) Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete. ACI Struct J 9:511–520

    Google Scholar 

  14. Hillerborg A, Modeer M, Peterson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanic and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  15. Ibrahimbegovic A, Boulkertous A, Davenne L, Brancherie D (2010) Modeling of reinforced-concrete structures providing crack spacing based on XFEM, ED-FEM and novel operator split solution procedure. Int J Numer Methods Eng 83:452–481

    Google Scholar 

  16. Khalfallah S, Ouchenane M (2007) Numerical solution of bond for pull-out test: the direct problem. Asian J Civ Eng 8:491–505

    Google Scholar 

  17. Kwak HG, Kim SP (2001) Bond slip behavior under monotonic uniaxial loads. Eng Struct 23:238–309

    Article  Google Scholar 

  18. Lowes LN, Moehle JP, Govindjee S (2004) Concrete-steel bond model for use in finite element modeling of reinforced concrete structures. ACI Struct J 101:501–511

    Google Scholar 

  19. Matallah M, La Borderie C, Maurel O (2010) A practical method to estimate crack opening in concrete structures. Int J Numer Anal Methods Geomech 34:1615–1633

    Google Scholar 

  20. Mivelaz P (1996) Etanchéité des structures en béton armé- Fuites au travers d’un élément fissuré. PhD thesis Ecole Polytechnique Fédérale de Lausanne

  21. Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. ACI J 64:152–163

    Google Scholar 

  22. Nilson AH (1968) Nonlinear analysis of reinforced concrete by the finite element method. ACI J 65:757–766

    Google Scholar 

  23. Oliveira RS, Ramalho MA, Corrêa MRS (2008) A layered finite elements for reinforced concrete beams with bond-slip effects. Cem Concr Compos 30:245–252

    Article  CAS  Google Scholar 

  24. Picandet V, Khelidj A, Bastian G (2001) Effect of axial compressive damage on gas permeability of ordinary and high performance concrete. Cem Concr Res 31:1525–1532

    Article  CAS  Google Scholar 

  25. Ragueneau F, Dominguez N, Ibrahimbegovic A (2006) Thermodynamic-based interface model for cohessive brittle materials: application to bond slip in RC structures. Comput Methods Appl Mech Eng 195:7249–7263

    Article  Google Scholar 

  26. Torre-Casanova A (2012) Prise en compte de la liaison acier-béton pour le calcul de structures industrielles. Phd Thesis Ecole Normale Supérieure de Cachan

  27. Torre-Casanova A, Jason L, Davenne L, Pinelli X (2013) Confinement effects on the steel-concrete bond strength and pull-out failure. Eng Fract Mech 97:92–104

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. F. Hild for his helpful discussions concerning the image correlation technique.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Jason.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jason, L., Torre-Casanova, A., Davenne, L. et al. Cracking behavior of reinforced concrete beams: experiment and simulations on the numerical influence of the steel-concrete bond. Int J Fract 180, 243–260 (2013). https://doi.org/10.1007/s10704-013-9815-6

Download citation

Keywords

  • Reinforced concrete beams
  • Cracking
  • Steel-concrete bond
  • Digital image correlation