International Journal of Fracture

, Volume 180, Issue 2, pp 243–260 | Cite as

Cracking behavior of reinforced concrete beams: experiment and simulations on the numerical influence of the steel-concrete bond

  • L. Jason
  • A. Torre-Casanova
  • L. Davenne
  • X. Pinelli
Original Paper

Abstract

Experimental and numerical results are provided in this contribution to study the global and cracking behaviors of two reinforced concrete beams subjected to four point bending. Experimentally, the use of image correlation technique enables to obtain precise information concerning the cracking properties (spacing, cumulated, maximum and mean values of the opening). Numerically, two simulations are compared taking into account a bond model between steel and concrete or supposing a perfect relation between the two materials. In both cases, a good agreement is achieved between numerical and experimental results even if the introduction of the bond effects has a direct influence during the development of the cracks (better agreement during the “active” cracking phase).

Keywords

Reinforced concrete beams Cracking Steel-concrete bond Digital image correlation 

Notes

Acknowledgments

The authors would like to thank Prof. F. Hild for his helpful discussions concerning the image correlation technique.

References

  1. Au FTK, Bai ZZ (2007) two-dimensional nonlinear finite element analysis of monotonically and nonreversed cyclically loaded RC beams. Eng Struct 29:2921–2934CrossRefGoogle Scholar
  2. Besnard G, Hild F, Roux S (2006) Finite element displacement field analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46:789–803CrossRefGoogle Scholar
  3. Casanova A, Jason L, Davenne L (2012) Bond slip model for the simulation of reinforced concrete structures. Eng Struct 39:66–78CrossRefGoogle Scholar
  4. Castel A, François R (2011) Modeling of steel and concrete strains between primary cracks for the prediction of cover-controlled cracking in RC beams. Eng Struct 33:3668–3675CrossRefGoogle Scholar
  5. Clément JL (1987) Interface acier-béton et comportement des structures en béton armé- Caractérisation- Modélisation. PhD Thesis Université Paris 6Google Scholar
  6. Costa C, Pegon P, Arêde A, Castro J (2004) Implementation of the damage model in tension and compression with plasticity in Cast3M. JRC ReportGoogle Scholar
  7. Daoud A (2003) Etudes expérimentales de la liaison entre l’acier et le béton autoplaçant - Contribution à la modélisation. PhD Thesis INSA ToulouseGoogle Scholar
  8. Dominguez N, Ibrahimbegovic A (2012) A non-linear thermodynamical model for steel-concrete bonding. Comput Struct 106–107:29–45CrossRefGoogle Scholar
  9. Eligehausen R, Popov EP, Bertero VV (1983) Local bond stress - slip relationships of deformed bars under generalized excitations. Report \(\text{ n}^{\circ }\) UCB/EERC-83/23 University of California Google Scholar
  10. Eurocode 2 (2007) Calcul des structures en béton. NF-EN-1992Google Scholar
  11. Ferreira MDC, Venturini WS, Hild F (2011) On the analysis of notched concrete beams : from measurement with digital image correlation to identification with boundary element method of a cohesive model. Eng Fract Mech 78:71–84CrossRefGoogle Scholar
  12. Harajli MH (1994) Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete. ACI Struct J 9:511–520 Google Scholar
  13. Hillerborg A, Modeer M, Peterson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanic and finite elements. Cem Concr Res 6:773–782CrossRefGoogle Scholar
  14. Ibrahimbegovic A, Boulkertous A, Davenne L, Brancherie D (2010) Modeling of reinforced-concrete structures providing crack spacing based on XFEM, ED-FEM and novel operator split solution procedure. Int J Numer Methods Eng 83:452–481Google Scholar
  15. Khalfallah S, Ouchenane M (2007) Numerical solution of bond for pull-out test: the direct problem. Asian J Civ Eng 8:491–505Google Scholar
  16. Kwak HG, Kim SP (2001) Bond slip behavior under monotonic uniaxial loads. Eng Struct 23:238–309CrossRefGoogle Scholar
  17. Lowes LN, Moehle JP, Govindjee S (2004) Concrete-steel bond model for use in finite element modeling of reinforced concrete structures. ACI Struct J 101:501–511Google Scholar
  18. Matallah M, La Borderie C, Maurel O (2010) A practical method to estimate crack opening in concrete structures. Int J Numer Anal Methods Geomech 34:1615–1633Google Scholar
  19. Mivelaz P (1996) Etanchéité des structures en béton armé- Fuites au travers d’un élément fissuré. PhD thesis Ecole Polytechnique Fédérale de LausanneGoogle Scholar
  20. Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. ACI J 64:152–163Google Scholar
  21. Nilson AH (1968) Nonlinear analysis of reinforced concrete by the finite element method. ACI J 65:757–766Google Scholar
  22. Oliveira RS, Ramalho MA, Corrêa MRS (2008) A layered finite elements for reinforced concrete beams with bond-slip effects. Cem Concr Compos 30:245–252CrossRefGoogle Scholar
  23. Picandet V, Khelidj A, Bastian G (2001) Effect of axial compressive damage on gas permeability of ordinary and high performance concrete. Cem Concr Res 31:1525–1532CrossRefGoogle Scholar
  24. Ragueneau F, Dominguez N, Ibrahimbegovic A (2006) Thermodynamic-based interface model for cohessive brittle materials: application to bond slip in RC structures. Comput Methods Appl Mech Eng 195:7249–7263CrossRefGoogle Scholar
  25. Torre-Casanova A (2012) Prise en compte de la liaison acier-béton pour le calcul de structures industrielles. Phd Thesis Ecole Normale Supérieure de CachanGoogle Scholar
  26. Torre-Casanova A, Jason L, Davenne L, Pinelli X (2013) Confinement effects on the steel-concrete bond strength and pull-out failure. Eng Fract Mech 97:92–104Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Jason
    • 1
    • 2
  • A. Torre-Casanova
    • 1
    • 3
  • L. Davenne
    • 4
  • X. Pinelli
    • 3
  1. 1.CEA (Atomic Energy Commission), DEN, DANS, DM2S, SEMT, LM2S (Mechanics and System Simulation Laboratory)Gif sur YvetteFrance
  2. 2.LaMSID, UMR CNRS-EDF-CEA 8193ClamartFrance
  3. 3.Laboratoire de Mécanique et Technologie (LMT), ENS CachanCachanFrance
  4. 4.IUT de Ville d’AvrayVille d’AvrayFrance

Personalised recommendations