Skip to main content
Log in

A Critical Grain Size Concept to Predict the Impact Transition Temperature of Ti-Microalloyed Steels

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Based on the assumption that local principal stress remains the same everywhere within a ferrite grain, a critical value of grain size can be determined for a fixed TiN particle size. When the grain size is smaller than the critical size, grain boundary is expected to resist the propagation of a micro-crack that is initiated from a TiN particle. Using this concept, an attempt has been made to predict the local cleavage fracture stress and 27J impact transition temperature (ITT) of different Ti-microalloyed steels, which were subjected to (instrumented) Charpy impact testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong RW (1967) Relation between the Petch friction stress and the thermal activation rate equations. Acta Mater 15: 667–668

    Article  CAS  Google Scholar 

  • ASTM E 23–05 (2005), Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, United States.

  • Bhattacharjee D, Davis CL (2002) Influence of processing history on mesotexture and microstructure-toughness relationship in control-rolled and normalised steels. Scripta Mater 47: 825–831

    Article  CAS  Google Scholar 

  • Chaouadi R, Fabry A (2002) in D. Francois, A. Pineau (Eds.), On the utilization of the instrumented Charpy V impact test for characterizing the flow and fracture behaviour of reactor pressure vessel steels, From Charpy to Present Impact Testing, Elsevier Science and ESIS, 103-117.

  • Chen JH, Zhu L, Ma H (1990) On the scattering of the local fracture stress. Acta Mate. 38: 2527–2535

    Article  CAS  Google Scholar 

  • Curry D, Knott JF (1978) Effects of microstructure on cleavage fracture stress in steel. Met Sci 12: 511–514

    Article  CAS  Google Scholar 

  • Echeverría A, Rodriguez-Ibabe JM (2003) The role of grain size in brittle particle induced fracture of steels. Mat Sci and Eng A 346: 149–158

    Article  Google Scholar 

  • Fairchild DP, Howden DG, Clark WAT (2000) The Mechanism of Brittle Fracture in a. Microalloyed Steel: Part II. Metall Trans A 31: 653–667

    Google Scholar 

  • Gerberich WW, Kurman E (1985) New contributions to the effective surface energy of cleavage. Scripta Mater 19: 295–298

    Article  CAS  Google Scholar 

  • Hahn GT (1984) The influence of microstructure on brittle fracture toughness. Metall Trans A 15: 947–959

    Article  Google Scholar 

  • Knott JF (1973) Fundamentals of Fracture Mechanics. Butterworth and Co., London

    Google Scholar 

  • Martin-Meizoso A, Ocana-Arizcorreta I, Gil-Sevillano J, Fuentes-Perez M (1994) Modelling cleavage fracture of bainite steels. Acta Mater 42: 2057–2068

    Article  CAS  Google Scholar 

  • Norris DM (1979) Computer Simulation of the Charpy V-Notch Toughness Test. Eng Fract Mech 11: 261–271

    Article  Google Scholar 

  • Petch NJ (1986) The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel. Acta Mater 34: 1387–1393

    Article  CAS  Google Scholar 

  • Pineau A, Tanguy B (2010) Advances in cleavage fracture modelling in steels: micromechanical, numerical and multiscale aspects. C R Physique 11: 316

    Article  CAS  Google Scholar 

  • Ray A, Chakrabarti D (2012), Effect of grain size and meso-texture on the impact toughness of Ti-microalloyed steel, Mat Sci Forum 702-703, 766-769.

    Google Scholar 

  • Rodriguez-Ibabe JM (1998), The role of microstructure in toughness behaviour of microalloyed steels, Mat Sci Forum 284-286, 51-62

    Google Scholar 

  • Rosenfield AR, Shetty DK (1986) Particle- induced cleavage crack initiation in steel. Scripta Mater 20: 439–440

    Article  CAS  Google Scholar 

  • San Martin JI, Rodriguez-Ibabe JM (1999) Determination of energetic parameters controlling cleavage fracture in a Ti-V microalloyed ferrite-pearlite steel. Scripta Mater 40: 459–464

    Article  CAS  Google Scholar 

  • Server WL (1978) Impact three points bend testing for notched and precracked specimens. J Testing & Evaluation 6: 29–34

    Article  Google Scholar 

  • Wu SJ, Davis CL (2004), Effect of duplex ferrite grain size distribution on local fracture stresses of Nb-microalloyed steels, Mat Sci and Eng A 387-389, 456-460.

    Google Scholar 

  • Yan W, Shan YY, Yang K (2006) Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels. Metall Trans A 37: 2147–2158

    Article  Google Scholar 

  • Yaroshevich VD, Ryvkina DG (1970) Thermal-Activation Nature of Plastic Deformation in Metals. Sov Phys Solid State 12: 363–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, A., Sivaprasad, S. & Chakrabarti, D. A Critical Grain Size Concept to Predict the Impact Transition Temperature of Ti-Microalloyed Steels. Int J Fract 173, 215–222 (2012). https://doi.org/10.1007/s10704-012-9676-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9676-4

Keywords

Navigation