Skip to main content
Log in

Fracture of a finite piezoelectric layer with a penny-shaped crack

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper studies a penny-shaped crack in a finite thickness piezoelectric material layer. The piezoelectric medium is subjected to a thermal flux on its top and bottom surfaces. Both thermally insulated crack and heated crack are considered. Numerical solution for the finite layer thickness is obtained through the solution of a pair of dual integral equations. The result reduces to the closed form solution when the thickness of the piezoelectric layer becomes infinite. Exact expressions for the stress and electric displacement at the crack border are given as a function of the stress intensity factor, which is determined by the applied thermal flux. This paper is useful for the reliability design of piezoelectric materials in thermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bermejo R, Grunbichler H, Kreith J, Auer C (2010) Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: effect of mechanical load and temperature. J Eur Ceramic Soc 30: 705–712

    Article  CAS  Google Scholar 

  • Chen CD (2006) On the singularities of the thermo-electro-elastic fields near the apex of a piezoelectric bonded wedge. Int J Solids Struct 43: 957–981

    Article  Google Scholar 

  • Chen WQ, Shioya T (1999) Fundamental solution for a penny-shaped crack in a piezoelectric medium. J Mech Phys Solids 47: 1459–1475

    Article  Google Scholar 

  • Dunn ML (1994) The effects of crack face boundary conditions on the fracture of piezoelectric solids. Eng Fract Mech 48: 25–39

    Article  Google Scholar 

  • Fulton CC, Gao H (2001) Effect of local polarization switching on piezoelectric fracture. J Mech Phys Solids 49: 927–952

    Article  Google Scholar 

  • Gao H, Barnett DM (1996) An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture. Int J Fract 79: R25–R29

    Article  Google Scholar 

  • Gao H, Zhang T-Y, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45: 491–510

    Article  CAS  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1965) Tables of integrals, series and products. Academic Press, New York

    Google Scholar 

  • Kirilyuk VS (2008) Thermostressed state of a piezoelectric body with a plane crack under symmetric thermal load. Int Appl Mech 44: 320–330

    Article  Google Scholar 

  • Kogan L, Hui CY, Molkov V (1996) Stress and induction field of a spherical inclusion or a penny shaped crack in a transversely isotropic piezoelectric material. Int J Solids Struct 33: 2719–2737

    Article  Google Scholar 

  • Kuna M (2010) Fracture mechanics of piezoelectric materials—where are we right now?. Eng Fract Mech 77: 309–326

    Article  Google Scholar 

  • Li YD, Lee KY, Feng FX (2011) Magnetostrictive/electrostrictive fracture of the piezomagnetic and piezoelectric layers in a multiferroic composite: anti-plane case. Int J Solids Struct 48: 1311–1317

    Article  CAS  Google Scholar 

  • Lucato S, Lupascu DC, Kamlah M, Rodel J, Lynch CS (2001) Constraint-induced crack initiation at electrode edges in piezoelectric ceramics. Acta Mater 49: 2751–2759

    Article  Google Scholar 

  • Narita F, Shindo Y, Hirama M (2010) Electric delayed fracture and localized polarization switching of cracked piezoelectric ceramics in three-point bending. Int J Damage Mech 19: 285–300

    Article  CAS  Google Scholar 

  • Noda N, Kimura S (1998) Deformation of a piezothermoelectric composite plate considering the coupling effect. J Therm Stress 21: 359–379

    Article  Google Scholar 

  • Ootao Y, Tanigawa Y (2002) Transient piezothermoelasticity for a cylindrical composite panel composed of angle-ply and piezoelectric laminae. Int J Solids Struct 39: 5737–5752

    Article  Google Scholar 

  • Park SB, Sun CT (1995) Effect of electric field on fracture of piezoelectric ceramics. Int J Fract 70: 203–216

    Article  Google Scholar 

  • Qin QH, Mai Y-W (1997) Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid. Theor Appl Fract Mech 26: 185–191

    Article  Google Scholar 

  • Rao BN, Kuna M (2010) Interaction integrals for thermal fracture of functionally graded piezoelectric materials. Eng Fract Mech 77: 37–50

    Article  Google Scholar 

  • Shang FL (2002) Analytical solutions for two penny-shaped crack problems in thermo-piezoelectric materials and their finite element comparisons. Int J Fract 117: 113–128

    Article  Google Scholar 

  • Shang F, Wang Z, Li Z (1996) Thermal stresses analysis of a three-dimensional crack in a thermopiezoelectric solid. Eng Fract Mech 55: 737–750

    Article  Google Scholar 

  • Shang F, Kuna M, Kitamura T (2003) Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part I: Analytical development. Theor Appl Fract Mech 40: 237–246

    Article  Google Scholar 

  • Shindo Y, Narita F, Horiguchi K, Magara Y, Yoshida M (2003) Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test. Acta Mater 51: 4773–4782

    Article  CAS  Google Scholar 

  • Sosa H (1992) On the fracture mechanics of piezoelectric solids. Int J Solids Struct 29: 2613–2622

    Article  Google Scholar 

  • Suo Z, Kuo C-M, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40: 739–765

    Article  Google Scholar 

  • Ueda S, Kondo H (2008) Transient intensity factors for a parallel crack in a plate of a functionally graded piezoelectric material under thermal shock loading conditions. J Therm Stress 31: 211–232

    Article  Google Scholar 

  • Verhoosel CV, Remmers JJC, Gutierrez M (2010) A partition of unity-based multiscale approach for modelling fracture in piezoelectric ceramics. Int J Numer Methods Eng 82: 966–994

    Article  Google Scholar 

  • Wang BL, Mai Y-W (2006) Near-tip fields for penny-shaped cracks in magnetoelectroelastic media. Key Eng Mater 312: 41–46

    Article  Google Scholar 

  • Wang BL, Noda N (2001) Design of a smart functionally graded thermopiezoelectric composite structure. Smart Mater Struct 10: 189–193

    Article  Google Scholar 

  • Wang BL, Noda N (2001) Thermally induced fracture of a smart functionally graded composite structure. Theor Appl Fract Mech 35: 93–109

    Article  Google Scholar 

  • Wang BL (2004) Exact electroelastic solutions for penny-shaped cracks under prescribed temperature or thermal flow. Appl Phys Lett 85: 2800–2802

    Article  CAS  Google Scholar 

  • Wang BL, Noda N (2004) Exact thermoelectroelasticity solution for a penny-shaped crack in piezoelectric materials. J Therm Stress 27: 241–251

    Article  Google Scholar 

  • Wang BL, Noda N, Han JC, Du SY (2002) Surface thermal shock fracture of a semi-infinite piezoelectric medium (poling axis parallel to the crack plane). Mech Mater 34: 135–144

    Article  Google Scholar 

  • Wang ZK (1994) Penny-shaped crack in transversely isotropic piezoelectric materials. Acta Mech Sin 10: 49–60

    Google Scholar 

  • Zhang TY, Gao CF (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract Mech 41: 339–379

    Article  CAS  Google Scholar 

  • Zhang TY, Zhao MH, Tong P (2002) Fracture of piezoelectric ceramics. Adv Appl Mech 38: 147–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B.L., Sun, Y.G. & Zhu, Y. Fracture of a finite piezoelectric layer with a penny-shaped crack. Int J Fract 172, 19–39 (2011). https://doi.org/10.1007/s10704-011-9643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9643-5

Keywords

Navigation