Skip to main content
Log in

Application of Contact Theory to Evaluation of Elastic Properties of Low Consolidated Porous Media

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new approach to the calculation of the elastic bulk modulus of low consolidated porous media is developed based on a physical consolidation model of rocks and the classical Hertz contact theory. The derived analytical relationships for the elastic bulk modulus, which take into account some micro-structural characteristics of packing, are compared with theoretical predictions from various micromechanics theories, Hashin-Shtrikman strict bounds as well as with experimental results available for low consolidated granular materials. The latter comparison demonstrates a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedrikovetsky P. (1993) Mathematical Theory of Oil and Gas Recovery: With Applications to ex-USSR Oil and Gas Fields 1st ed. Kluwer Academic Publishers, London-Boston-Dodrecht

    Google Scholar 

  • Digby P.J. (1981) The effective elastic moduli of porous granular rocks. ASME Journal of Applied Mechanics 48: 803–808

    Article  Google Scholar 

  • Chang C.S., Chao S.J., Chang Y. (1995) Estimates of elastic moduli for granular material with anisotropic random packing structure. International Journal of Solids and Structures 32(14): 1989–2008

    Article  Google Scholar 

  • Dvorkin J., Nur A., Yin H. (1994) Effective properties of cemented granular materials. Mechanics of Materials 18(4): 351–366

    Article  Google Scholar 

  • Gibson, L.J. & Ashby, M.F., 1999. Cellular Solids: Structure and Properties 2nd ed., Cambridge University Press.

  • Han G., Dusseault M.B. (2003) Description of fluid flow around a wellbore with stress-dependent porosity and permeability. Journal of Petroleum Science and Engineering 40(1-2): 1–16

    Article  CAS  Google Scholar 

  • Hashin Z., Shtrikman S. (1961) Note on a variational approach to the theory of composite elastic materials. Journal of the Franklin Institute 271(4): 336–341

    Article  Google Scholar 

  • Hertz, H., 1896. Miscellaneous papers. D. E. Jones & G. A. Schott, eds., New York: MacMillan.

  • Iwata H., Homma T. (1974) Distribution of coordination numbers in random packing of homogeneous spheres. Powder Technology 10(1-2): 79–83

    Article  Google Scholar 

  • Johnson K.L. (1985) Contact Mechanics. Cambridge University Press, Cambridge [Cambridgeshire]

    Google Scholar 

  • Johnson K.L. (1982) One hundred years of hertz contact. ARCHIVE: Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196) 196(1982): 363–378

    Article  Google Scholar 

  • Kachanov M., Tsukrov I., Shafiro B. (1994) Effective Moduli of Solids With Cavities of Various Shapes. Applied Mechanics Reviews 47(1S): S151–S174

    Article  Google Scholar 

  • Kováčik J. (2008) Correlation Between Elastic Modulus, Shear Modulus, Poisson’s Ratio and Porosity in Porous Materials. Advanced Engineering Materials 10(3): 250–252

    Article  Google Scholar 

  • Kováčik J. (1999) Correlation between Young’s modulus and porosity in porous materials. Journal of Materials Science Letters 18(13): 1007–1010

    Article  Google Scholar 

  • Krajcinovic D. et al (1992) Elastic moduli of perforated plates in the neighborhood of critical state. International Journal of Solids and Structures 29(14-15): 1837–1847

    Article  Google Scholar 

  • Mallick K. et al (1993) Critical state of a two-dimensional elastic continuum containing elliptical voids. Engineering Fracture Mechanics 46(4): 553–570

    Article  Google Scholar 

  • Markov K. (2000) Elementary micromechanics of heterogeneous media. In: Markov K., Preziosi L. (eds) Heterogeneous Media: Micromechanics Modeling Methods and Simulations. Birkhäuser, Boston, pp 1–162

    Google Scholar 

  • Mori T., Tanaka K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5): 571–574

    Article  Google Scholar 

  • Nur A. et al (1998) Critical porosity: a key to relating physical properties to porosity in rocks. The Leading Edge 17(3): 357–362

    Article  Google Scholar 

  • Panayiotopoulos K. (1989) Packing of sands - A review. Soil and Tillage Research 13(2): 101–121

    Article  Google Scholar 

  • Sevostianov I., Kachanov M. (2004) Connection between elastic and conductive properties of microstructures with Hertzian contacts. Proc. R. Soc. Lond. A 460: 1529–1534

    Article  Google Scholar 

  • Smith W.O., Foote P.D., Busang P.F. (1929) Packing of Homogeneous Spheres. Physical Review 34(9): 1271

    Article  Google Scholar 

  • Tsukamoto H., Kotousov A. (2006) Transformation Toughening in Zirconia-Enriched Composites: Micromechanical Modeling. International Journal of Fracture 139(1): 161–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Bedrikovetsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neto, L.B., Kotousov, A. & Bedrikovetsky, P. Application of Contact Theory to Evaluation of Elastic Properties of Low Consolidated Porous Media. Int J Fract 168, 267–276 (2011). https://doi.org/10.1007/s10704-010-9574-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9574-6

Keywords

Navigation