Skip to main content
Log in

A time-discrete model for dynamic fracture based on crack regularization

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript


We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 (1990); Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430, 2007) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048, 2010). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Ambrosio L, Braides A (1995) Energies in SBV and variational models in fracture mechanics. In: Homogenization and applications to material sciences (Nice, 1995), volume 9 of GAKUTO Internat. Ser Math Sci Appl Gakkōtosho, Tokyo, pp 1–22

  • Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43(8): 999–1036

    Article  Google Scholar 

  • Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Ital B (7) 6(1): 105–123

    Google Scholar 

  • Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8): 1209–1229

    Article  Google Scholar 

  • Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85(1): 118–121

    Article  CAS  Google Scholar 

  • Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2008) PETSc users manual. ANL-95/11-Revision 3.0.0, Argonne National Laboratory

  • Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2009) PETSc Web page,

  • Bellettini G, Coscia A (1994) Discrete approximation of a free discontinuity problem. Numer Funct Anal Optim 15(3-4): 201–224

    Article  Google Scholar 

  • Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9(3): 411–430

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4): 797–826

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. Springer

  • Braides A (1998) Approximation of free-discontinuity problems. Number 1694 in Lecture Notes in Mathematics. Springer

  • Braides A (2002) Γ-convergence for beginners, volume 22 of Oxford Lecture series in mathematics and its applications. Oxford University Press, Oxford

  • Bronsard L, Kohn RV (1990) On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl Math 43(8): 983–997

    Article  Google Scholar 

  • Corson F, Adda-Bedia M, Henry H, Katzav E (2009) Thermal fracture as a framework for crack propagation law. Int J Fract 158: 1–14

    Article  Google Scholar 

  • Dal Maso G (1993) An introduction to Γ-convergence. Birkhäuser, Boston

    Google Scholar 

  • Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55: 2513–2537

    Article  Google Scholar 

  • Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen C-S, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev 65(3): 036117

    CAS  Google Scholar 

  • Francfort GA, Larsen CJ (2003) Existence and convergence for quasi-static evolution in brittle fracture. Comm Pure Appl Math 56(10): 1465–1500

    Article  Google Scholar 

  • Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8): 1319–1342

    Article  Google Scholar 

  • Freddi F, Royer Carfagni G (2010) Regularized variational theories of fracture: a unified approach. J Mech Phys Solids 58(8): 1154–1174

    Article  Google Scholar 

  • Giacomini A (2005) Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc Var Partial Differ Equ 22(2): 129–172

    Google Scholar 

  • Grandinetti, L (eds) (2007) TeraGrid: analysis of organization, system architecture, and middleware enabling new types of applications, advances in parallel computing. IOS Press, Amsterdam

    Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221: 163–198

    Article  Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2): 342– 368

    Article  CAS  Google Scholar 

  • Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4): 045501

    Article  CAS  Google Scholar 

  • Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett 92(24): 245510

    Article  Google Scholar 

  • Keyes DE, Reynolds DR, Woodward CS (2006) Implicit solvers for large-scale nonlinear problems. J Phys Conf Ser 46: 433–442

    Article  Google Scholar 

  • Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture: a practical application to the french Panthéon. J Elast 95(1–2): 1–30

    Article  Google Scholar 

  • Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20: 1021–1048

    Article  Google Scholar 

  • Larsen CJ (2010) Models for dynamic fracture based on Griffith’s criterion. In: Hackl K (eds) IUTAM symposium on variational concepts with applications to the mechanics of materials. Springer, Berlin, pp 131–140

    Chapter  Google Scholar 

  • Lawn B (1993) Fracture of brittle solids. 2. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Marconi VI, Jagla EA (2005) Diffuse interface approach to brittle fracture. Phys Rev 71(3): 036110

    CAS  Google Scholar 

  • Modica L, Mortola S (1977) Il limite nella Γ–convergenza di una famiglia di funzionali ellittici. Boll Un Mat Ital A (5) 14(3): 526–529

    Google Scholar 

  • Modica L, Mortola S (1977) Un esempio di Γ–convergenza. Boll Un Mat Ital B (5) 14(1): 285–299

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Blaise Bourdin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourdin, B., Larsen, C.J. & Richardson, C.L. A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168, 133–143 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: