Skip to main content
Log in

Cross-Property Connection between Work-Hardening Coefficient and Electrical Resistivity of Stainless Steel During Plastic Deformation

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Present paper focuses on the cross-property connection between the changes in electrical resistivity and work hardening coefficient in the process of plastic deformation. The possibility of the cross-property connection is provided by the fact that both quantities are governed by the same parameter - growth of the dislocation density caused by the applied stresses. Experimental measurements on stainless steel 304 are in a good agreement with analytical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berryman J.G., Milton G.W. (1988) Microgeometry of random composites and porous media. J. Phys. D 21: 87–94

    Google Scholar 

  • Bristow J.R. (1960) Microcracks, and the static and dynamic elastic constants of annealed heavily coldworked metals. British J. Appl. Phys 11: 81–85

    Article  CAS  Google Scholar 

  • Brown R.A. (1967) Electron and Phonon bound states and scattering resonances for extended defects in crystals. Phys. Rev. 156: 889–902

    Article  CAS  Google Scholar 

  • Brown R.A. (1977) Electrical resistivity of dislocations in metals. J. Phys. F: Metal Phys 7: 1283–1295

    Article  CAS  Google Scholar 

  • Gibiansky L.V., Torquato S. (1993) Link between the conductivity and elastic moduli of composite materials. Phys. Rev. Letters 71: 2927–2930

    Article  CAS  Google Scholar 

  • Gibiansky L.V., Torquato S. (1995) Rigorous link between the conductivity and elastic moduli of fiber reinforced materials. Phil. Trans. Roy. Soc. L. A353: 243–278

    Article  Google Scholar 

  • Gibiansky L.V., Torquato S. (1996a) Connection between the conductivity and bulk modulus of isotropic composite materials. Proc. Roy. Soc. L. A452: 253–283

    Article  Google Scholar 

  • Gibiansky L.V., Torquato S. (1996b) Bounds on the effective moduli of cracked materials. J. Mech. Phys. Solids 44: 233–242

    Article  Google Scholar 

  • Honeycombe R.W.K (1984) The Plastic Deformation of Metals. Edward Arnold Ltd, London

    Google Scholar 

  • Hunter S.C., Nabarro F.R.N. (1953) The propagation of electrons in a strained metallic lattice. Proc. Roy. Soc. L A 220: 542–561

    Article  Google Scholar 

  • Kachanov M., Sevostianov I. (2005) On quantitative characterization of microstructures and effective properties. Int. J. Solids Struct. 42: 309–336

    Article  Google Scholar 

  • Karolik A.S., Luhvich A.A. (1994) Calculation of electrical resistivity produced by dislocations and grain boundaries in metals. J. Phys: Condens. Matter 6: 873–886

    Article  CAS  Google Scholar 

  • Kuhlmann-Wilsdorf, D. (1989) Theory of Plastic Deformation :- properties of low energy dislocation structures Materials Science and Engineering, A113, 1-4

  • Milton, G.W. (1997) Composites: a myriad of microstructure independent relations. In: Theoretical and Applied Mechanics 1996, (ed. T. Tatsumi et al.), Elsevier, 443-459.

  • Seeger, A. (1958) Plasticity of crystals. In: Handbuch der Physik. Bd. VII. 2. Kristallphysik II (Ed: by S. Flügge), 383-665.

  • Sevostianov, I. (2003) Explicit relations between elastic and conductive properties of a material containing annular cracks. Phil. Trans. Roy. Soc. L, A-361, 2003, 987-999.

    Google Scholar 

  • Sevostianov I., Kachanov M. (2002) Explicit cross-property correlations for anisotropic two-phase composite materials. J. Mech. Phys. Solids 50: 253–282

    Article  Google Scholar 

  • Sevostianov I., Sabina F. (2007) Cross-property connections for fiber reinforced piezoelectric materials. Int. J. Eng. Sciences 45: 719–735

    Article  CAS  Google Scholar 

  • Sevostianov I., Kováčik J., Kováčik J., Kováčik J. (2006) Elastic and electric properties of closed-cell aluminum foams. Cross-property connection., Materials Science and Engineering A-420: 87–99

    Google Scholar 

  • Sevostianov, I. and Kachanov, M. (2008) Connections between elastic and conductive properties of heterogeneous materials, In: Advances in Applied Mechanics, 42, (E.van der Giessen and H.Aref, Eds.), Academic Press, pp.69-252.

  • Tanaka K., Watanabe T. (1972) An electrical resistivity study of lattice defects in deformed iron. Japanese J. Appl. Phys. 11: 1429–1439

    Article  CAS  Google Scholar 

  • Watts B.R. (1988) The contribution of the long-range strain field of dislocations in metals to their electrical resistivity. J. Phys. F: Met. Phys., 18: 1183–1195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sevostianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, D., Sevostianov, I. Cross-Property Connection between Work-Hardening Coefficient and Electrical Resistivity of Stainless Steel During Plastic Deformation. Int J Fract 167, 281–287 (2011). https://doi.org/10.1007/s10704-010-9556-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9556-8

Keywords

Navigation