Skip to main content
Log in

Constitutive behavior of pressurized carbon nanoscrolls

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Carbon nanoscrolls (CNSs) are a class of graphene-based nanoscale materials with great potential for applications in nanotechnology and bioengineering. Fundamental description, understanding and regulation of these materials may ultimately lead to a new generation of integrated systems that utilize their unique properties. A particularly interesting property of a CNS is that there exists a stable equilibrium core size which can be uniquely determined from the basal graphene length, the interlayer spacing, the interaction energy between layers, the bending stiffness of graphene, as well as the difference between the pressure inside the core of the CNS and that on its outer surface. Here we investigate the strongly nonlinear constitutive behaviour of a CNS under pressure, focusing on its deformation, stability and biaxial modulus in response to its inner and external pressures. Our study suggests pressure sensitive applications of CNSs such as nanopumps and nanofilters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braga SF, Coluci VR, Baughman RH, Galvao DS (2007) Hydrogen storage in carbon nanoscrolls: an atomistic molecular dynamics study. Chem Phys Lett 441(1–3): 78–82

    Article  CAS  Google Scholar 

  • Braga SF, Coluci VR, Legoas SB, Giro R, Galvao DS, Baughman RH (2004) Structure and dynamics of carbon nanoscrolls. Nano Lett 4(5): 881–884

    Article  CAS  Google Scholar 

  • Chen Y, Lu J, Gao ZX (2007) Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J Phys Chem C 111(4): 1625–1630

    Article  CAS  Google Scholar 

  • Chuvilin AL, Kuznetsov VL, Obraztsov AN (2009) Chiral carbon nanoscrolls with a polygonal cross-section. Carbon 47(13): 3099–3105

    Article  CAS  Google Scholar 

  • Coluci VR, Braga SF, Baughman RH, Galvao DS (2007) Prediction of the hydrogen storage capacity of carbon nanoscrolls. Phys Rev B 75(12): 125404

    Article  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3): 435–447

    Article  CAS  Google Scholar 

  • Mpourmpakis G, Tylianakis E, Froudakis GE (2007) Carbon nanoscrolls: a promising material for hydrogen storage. Nano Lett 7(7): 1893–1897

    Article  CAS  Google Scholar 

  • Pan H, Feng Y, Lin J (2005) Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys Rev B 72(8): 085415

    Article  Google Scholar 

  • Pugno N (2008) Flexible nanovectors. J Phys Condens Matter 20: 474205

    Article  Google Scholar 

  • Roy D, Angeles-Tactay E, Brown RJC, Spencer SJ, Fry T, Dunton TA, Young T, Milton MJT (2008) Synthesis and raman spectroscopic characterisation of carbon nanoscrolls. Chem Phys Lett 465(4–6): 254–257

    Article  CAS  Google Scholar 

  • Rurali R, Coluci VR, Galvao DS (2006) Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: first-principles calculations. Phys Rev B 74(8): 085414

    Article  Google Scholar 

  • Savoskin MV, Mochalin VN, Yaroshenko AP, Lazareva NI, Konstantinova TE, Barsukov IV, Prokofiev LG (2007) Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 45(14): 2797–2800

    Article  CAS  Google Scholar 

  • Shioyama H, Akita T (2003) A new route to carbon nanotubes. Carbon 41(1): 179–181

    Article  CAS  Google Scholar 

  • Shi XH, Cheng Y, Pugno NM, Gao HJ (2009) Gigahertz breathing oscillators based on carbon nanoscrolls. Appl Phys Lett 95(16): 163113

    Article  Google Scholar 

  • Shi XH, Pugno NM, Gao HJ (2010a) Tunable core size of carbon nanoscrolls. J Comput Theor Nanosci 7(3): 517–521

    Article  CAS  Google Scholar 

  • Shi XH, Cheng Y, Pugno NM, Gao HJ (2010b) A translational nanoactuator based on carbon nanoscrolls on substrates. Appl Phys Lett 96(5): 053115

    Article  Google Scholar 

  • Shi XH, Cheng Y, Pugno NM, Gao HJ (2010c) Tunable water channels with carbon nanoscrolls. Small 6(6): 739–744

    Article  CAS  Google Scholar 

  • Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611): 1361

    Article  CAS  Google Scholar 

  • Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105(41): 9980–9987

    Article  CAS  Google Scholar 

  • Xie X, Ju L, Feng XF, Sun YH, Zhou RF, Liu K, Fan SS, Li QL, Jiang KL (2009) Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett 9(7): 2565–2570

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicola M. Pugno or Huajian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Pugno, N.M. & Gao, H. Constitutive behavior of pressurized carbon nanoscrolls. Int J Fract 171, 163–168 (2011). https://doi.org/10.1007/s10704-010-9545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9545-y

Keywords

Navigation