Skip to main content
Log in

The resistance curve for subcritical cracks near the threshold

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Thermodynamic analysis of brittle fracture specimens near the threshold developed by Rice (Thermodynamics of quasi-static growth of Griffith cracks, J Mech Phys Solid 26:61–78, 1978) is extended to specimens undergoing microstructural changes. The proposed extension gives rise to a generalization of the threshold concept that mirrors the way the resistance curve generalizes the fracture toughness. In the absence of experimental data, the resistance curve near the threshold is constructed using a basic lattice model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alava MJ, Nukala PKVV, Zapperi S (2006) Statistical models of fracture. Adv Phys 55(3–4): 349–476

    Article  Google Scholar 

  • Bell GI (1978) Models for specific adhesion of cells to cells. Science 200: 618–627

    Article  CAS  Google Scholar 

  • Bonamy D (2009) Intermittency and roughening in the failure of brittle heterogeneous materials. J Phys D Appl Phys 42(21): 214014

    Article  Google Scholar 

  • Broek D (1982) Elementary engineering fracture mechanics. Kluwer, Dordrecht

    Google Scholar 

  • Case ED, Smyth JR, Hunter JRO (1983) Microcrack healing during the temperature cycling of single phase ceramics. Frac Mech Ceramics 5: 507–530 (Plenum Press, New York)

    CAS  Google Scholar 

  • Chan KS, Page RA (1992) Origin of the creep-crack growth threshold in a glass-ceramic. J Am Ceramic Soc 75: 603–612

    Article  CAS  Google Scholar 

  • Cook RF (1999) Environmentally-controlled non-equilibrium crack propagation in ceramics. Mat Sci Eng A 260: 29–40

    Article  Google Scholar 

  • Eom K, Makarov DM, Rodin GJ (2005) Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single-molecule pulling experiments. Phys Rev E 71: 021904-1–021904-10

    Google Scholar 

  • Evans AG, Charles EA (1977) Strength recovery by diffusive crack healing. Acta Metallurgica 25: 919–927

    Article  CAS  Google Scholar 

  • Gupta TK (1975) Crack healing in thermally shocked MgO. J Am Ceramic Soc 58(3–4): 143–143

    Article  CAS  Google Scholar 

  • Jacobsen S, Marchan J, Boisvert L (1996) Effect of cracking and healing on chloride transport in OPC concrete. Cement Concrete Res 26(6): 869–881

    Article  CAS  Google Scholar 

  • Jud K, Kausch HH (1979) Load transfer through chain molecules after interpenetration at interfaces. Polymer Bull 1: 697–707

    Article  CAS  Google Scholar 

  • Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mat Sci 16: 204–210

    Article  CAS  Google Scholar 

  • Lange FF, Gupta TK (1970) Crack healing by heat treatment. J Am Ceramic Soc 53(1): 54–55

    Article  CAS  Google Scholar 

  • Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Makarov DM, Hansma PK, Metiu H (2001) Kinetic monte-carlo simulation of titin unfolding. J Chem Phys 114: 9663–9673

    Article  CAS  Google Scholar 

  • Marx R, Jungwirth F, Walter P-O (2004) Threshold intensity factors as lower boundaries for crack propagation in ceramics. BioMed Eng OnLine 3: 41

    Article  Google Scholar 

  • Metiu H, Lu YT, Zhang ZY (1992) Epitaxial-growth and the art of computer-simulations. Science 255: 1088–1092

    Article  CAS  Google Scholar 

  • Rice JR (1978) Thermodynamics of quasi-static growth of Griffith cracks. J Mech Phys Solids 26(2): 61–78

    Article  CAS  Google Scholar 

  • Schapery RA (1989) On the mechanics of crack closing and bonding in linear viscoelastic media. Int J Frac 39: 163–189

    Article  Google Scholar 

  • Smith DL, Evans B (1984) Diffusional crack healing in quartz. J Geophys Res 89(B6): 4125–4135

    Article  CAS  Google Scholar 

  • Vandembroucq D, Charles Y, Hild F, Roux S (2004) Material-independent crack arrest statistics. J Mech Phys Solids 52(7): 1651–1669

    Article  Google Scholar 

  • Voter AF (1986) Classically exact overlayer dynamics—diffusion of rhodium clusters on Rh(100). Phys Rev B 34: 6819–6829

    Article  CAS  Google Scholar 

  • Wan KT, Aimard N, Lathabai S, Horn RG, Lawn BR (1990) Interfacial energy-states of moisture-exposed cracks in mica. J Mat Res 5(1): 172–182

    Article  CAS  Google Scholar 

  • Wan KT, Lawn BR (1990) Surface forces at crack interfaces in mica in the presence of capillary condensation. Acta Metallurgica et Materialia 38(11): 2073–2083

    Article  CAS  Google Scholar 

  • Wiederhorn SM, Townsend PR (1970) Crack healing in glass. J Am Ceramic Soc 53(9): 486–489

    Article  CAS  Google Scholar 

  • Wool RP, O’Connor KM (1981) A theory of crack healing in polymers. J Appl Phys 52(10): 5953–5963

    Article  CAS  Google Scholar 

  • Zhang ZY, Haug K, Metiu H (1990) Exact classical simulation of hydrogen migration on Ni(100)—the role of fluctuations, recrossing, and multiple jumps. J Chem Phys 93: 3614–3634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Rodin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Makarov, D.E. & Rodin, G.J. The resistance curve for subcritical cracks near the threshold. Int J Fract 167, 147–155 (2011). https://doi.org/10.1007/s10704-010-9535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9535-0

Keywords

Navigation