Advertisement

International Journal of Fracture

, Volume 164, Issue 2, pp 325–332 | Cite as

Bimaterial Four Point Bend Specimen with Sub-Interface Crack

  • Liviu Marsavina
  • Timea Piski
Letters in Fracture and Micromechanics

Abstract

Asymmetric four point bend specimens are often used for determination mode II fracture toughness. Different corrections were proposed to classical solution of Stress Intensity Factors for this specimen. This paper provides a solution for a bi-material four point specimen with sub-interface crack. The solutions were obtained using Finite Element Analysis, and the effect of crack distance to interface, crack length and materials combination were investigated.

Keywords

four point bend bimaterial sub-interface crack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliha, M.R.M., Ayatollahi, M.R., Kharazi, B. (2008) Numerical and Experimental Investigations of Mixed Mode Fracture in Granite Unsing Four-Point-Bend Specimen in Fracture and Damage Mechanics, Eds. T. Boukharouba, M. Elboujdaini, G. Pluvinage, Springer, 2009.Google Scholar
  2. He M.Y., Hutchinson J.W. (2000) Asymmetric Four-Point Crack Specimen. Journal of Applied Mechanics 67: 207–209zbMATHCrossRefGoogle Scholar
  3. Huang Z., Suo Z., Xu G., He J., Prevost J.H., Sukumar N (2005) Initiation and arrest of an interfacial crack in a four-point bend test. Engineering Fracture Mechanics 72: 2584–2601CrossRefGoogle Scholar
  4. Hutchinson J.W., Mear M.E., Rice J.R. (1987) Crack paralleling an interface between dissimilar materials. Journal of Applied Mechanics 54: 828–832CrossRefGoogle Scholar
  5. Marsavina L., Sadowski T. (2009) Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress. Computational Materials Science 45(3): 693–697CrossRefGoogle Scholar
  6. Murakami Y. (1987) Stress Intensity Factors Handbook. Pergamon Press, New YorkGoogle Scholar
  7. Reinhardt H.W., Ozbolt J., Xu S., Dinku A. (1997) Shear of structural concrete members and pure mode II testing. Advanced Cement Based Materials 5: 75–85CrossRefGoogle Scholar
  8. Shahani A.R., Tabatabaei S.A. (2008) Computational of mixed mode stress intensity factors in a four-point bend specimen. Applied Mathematical Modelling 32: 1281–1288zbMATHCrossRefGoogle Scholar
  9. Tada H., Paris P., Irwin G.R. (1985) The Stress Analysis of Cracks Handbook. Del Research Corp., St. LouisGoogle Scholar
  10. Tilbrook M.T., Moon R.J., Hoffman M. (2005) Finite element simulations of crack propagation in functionally graded materials under flexural loading. Engineering Fracture Mechanics 72: 2444–2467CrossRefGoogle Scholar
  11. Tilbrook M.T., Rozenburg K., Steffler E.D., Rutgers L., Hoffman M. (2006) Crack propagation paths in layered, graded composites. Composites: Part B 37: 490–498CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department Strength of MaterialsPOLITEHNICA University of TimisoaraTimisoaraRomania

Personalised recommendations