Skip to main content
Log in

Pulse-like and crack-like dynamic shear ruptures on frictional interfaces: experimental evidence, numerical modeling, and implications

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Destructive large earthquakes occur as dynamic frictional ruptures along pre-existing interfaces (or faults) in the Earth’s crust. One of the important issues in earthquake dynamics is the local duration of relative displacement or slip. Seismic inversions show that earthquakes may propagate as self-healing pulse-like ruptures, with local slip duration being much shorter than the overall rupture duration. Yet many classical models produce crack-like ruptures, with local slip durations comparable to the overall rupture duration. We study rupture modes in an experimental set up designed to mimic a fault prestressed both in compression and in shear. Our experiments demonstrate systematic variation from crack-like to pulse-like rupture modes as nondimensional shear prestress is decreased. The results of our experiments are consistent with theories of ruptures on interfaces with velocity-weakening friction. To consider the possibility that slip-weakening friction can also result in such rupture mode transition in the presence of the dynamic nucleation procedure employed by the experimental setup, we conduct numerical simulations with linear slip-weakening friction. In the simulations, we use the parameter regimes that were shown in previous studies to reproduce supershear transition distances obtained in the same experimental setup. We find that simulations with linear slip-weakening friction are unable to reproduce pulse-like ruptures, even in the presence of the dynamic initiation procedure. Our experimental results and simulations imply that velocity-weakening friction plays an important role in dynamic behavior of shear ruptures and needs to be included in earthquake models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81: 5679–5687

    Article  ADS  Google Scholar 

  • Andrews DJ, Ben-Zion Y (1997) Wrinkle-like slip pulse on a fault between different materials. J Geophys Res 102(B1): 553–571

    Article  ADS  Google Scholar 

  • Archuleta RJ (1984) A faulting model for the 1979 Imperial- Valley earthquake. J Geophys Res 89(NB6): 4559–4585

    Article  ADS  Google Scholar 

  • Beeler NM, Tullis TE (1996) Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength. Bull Seismol Soc Am 86(4): 1130–1148

    Google Scholar 

  • Ben-Zion Y (2001) Dynamic ruptures in recent models of earthquake faults. J Mech Phys Solids 49(9): 2209–2244

    Article  MATH  ADS  Google Scholar 

  • Beroza GC, Mikumo T (1996) Short slip duration in dynamic rupture in the presence of heterogeneous fault properties. J Geophys Res 101(B10): 22449–22460

    Article  ADS  Google Scholar 

  • Cochard A, Madariaga R (1994) Dynamic faulting under rate-dependent friction. Pure Appl Geophys 142(3–4): 419–445

    Article  ADS  Google Scholar 

  • Cochard A, Madariaga R (1996) Complexity of seismicity due to highly rate-dependent friction. J Geophys Res 101: 25321–25336

    Article  ADS  Google Scholar 

  • Cochard A, Rice JR (2000) Fault rupture between dissimilar materials: ill-posedness, regularization, and slip-pulse response. J Geophys Res 105(B11): 25891–25907

    Article  ADS  Google Scholar 

  • Dally JW, Riley WF (1991) Experimental stress analysis. McGraw-Hill, New York

    Google Scholar 

  • Das SM, Aki K (1977) Numerical study of 2-dimensional spontaneous rupture propagation. Geophys J Royal Astro Soc 50(3): 643–668

    MATH  ADS  Google Scholar 

  • Day SM (1982) Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity. Bull Seismol Soc Am 72(3): 705–727

    Google Scholar 

  • Day SM, Yu G, Wald DJ (1998) Dynamic stress changes during earthquake rupture. Bull Seismol Soc Am 88(2): 512–522

    Google Scholar 

  • Di Toro G, Goldsby DL, Tullis TE (2004) Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427(6973): 436–439

    Article  CAS  PubMed  ADS  Google Scholar 

  • Dieterich JH (1979) Modeling of rock friction. 1. Experimental results and constitutive equations. J Geophys Res 84(NB5): 2161–2168

    Article  ADS  Google Scholar 

  • Dieterich JH et al (1981) Constitutive properties of faults with simulated gouge. In: Carter NL (eds) Mechanical behavior of crustal rocks, geophysical monograph. AGU, Washington, pp 103–120

    Google Scholar 

  • Dieterich JH (2007) Application of rate- and state-dependent friction to models of fault slip and earthquake occurence. Treatise Geophys 4: 107–129

    Article  Google Scholar 

  • Festa G, Vilotte JP (2006) Influence of the rupture initiation on the intersonic transition: crack-like versus pulse-like modes. Geophys Res Lett 33(15): L15320

    Article  ADS  Google Scholar 

  • Geubelle PH, Rice JR (1995) A spectral method for three-dimensional elastodynamic fracture problems. J Mech Phys Solids 43(11): 1791–1824

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Heaton TH (1990) Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys Earth Planet In 64(1): 1–20

    Article  ADS  Google Scholar 

  • Ida Y (1972) Cohesive force across tip of a longitudinal-shear crack and Griffiths specific surface-energy. J Geophys Res 77(20): 3796

    Article  ADS  Google Scholar 

  • Johnson E (1992) The influence of the lithospheric thickness on bilateral slip. Geophys J Int 108(1): 151–160

    Article  ADS  Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5): 1073–1095

    Google Scholar 

  • Kostrov BV (1966) Unsteady propagation of longitudinal shear cracks. J Appl Math Mech 30(6): 1241

    Article  Google Scholar 

  • Lapusta N, Rice JR (2004) Earthquake sequences on rate and state faults with strong dynamic weakening. Eos Trans AGU 85(47): T22A–05

    Google Scholar 

  • Liu Y, Lapusta N (2008) Transition of mode II cracks from sub-Rayleigh to intersonic speeds in the presence of favorable heterogeneity. J Mech Phys Solids 56(1): 25–50

    Article  MATH  ADS  Google Scholar 

  • Lu X, Lapusta N, Rosakis AJ (2007) Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc Natl Acad Sci USA 104: 18931–18936

    Article  PubMed  ADS  Google Scholar 

  • Lu X, Lapusta N, Rosakis AJ (2009) Analysis of supershear transition regimes in rupture experiments: the effect of nucleation conditions and friction parameters. Geophys J Int 177(2): 717–732

    Article  ADS  Google Scholar 

  • Lu X, Rosakis AJ, Lapusta N (2010) Rupture modes in laboratory earthquakes: effect of fault prestress and nucleation conditions. J Geophys Res

  • Lykotrafitis G, Rosakis AJ, Ravichandran G (2006a) Self-healing pulse-like shear ruptures in the laboratory. Science 313(5794): 1765–1768

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lykotrafitis G, Rosakis AJ, Ravichandran G (2006b) Particle velocimetry and photoelasticity applied to the study of dynamic sliding along frictionally-held bimaterial interfaces: techniques and feasibility. Exp Mech 46(2): 205–216

    Article  Google Scholar 

  • Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66(3): 639–666

    Google Scholar 

  • Madariaga R, Olsen KB (2000) Criticality of rupture dynamics in 3-D. Pure Appl Geophys 157: 1981–2001

    Article  ADS  Google Scholar 

  • Nielsen SB, Carlson JM, Olsen KB (2000) Influence of friction and fault geometry on earthquake rupture. J Geophys Res 105(B3): 6069–6088

    Article  ADS  Google Scholar 

  • Nielsen SB, Madariaga R (2003) On the self-healing fracture mode. Bull Seismol Soc Am 93(6): 2375–2388

    Article  Google Scholar 

  • Noda H, Dunham EM, Rice JR (2009) Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. J Geophys Res. doi:10.1029/2008JB006143 (in press)

  • Olsen KB, Madariaga R, Archuleta RJ (1997) Three-dimensional dynamic simulation of the 1992 Landers earthquake. Science 278(5339): 834–838

    Article  CAS  ADS  Google Scholar 

  • Perrin G, Rice JR, Zheng G (1995) Self-healing slip pulse on a frictional surface. J Mech Phys Solids 43(9): 1461–1495

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Rice JR (2006) Heating and weakening of faults during earthquake slip. J Geophys Res 111: B05311

    Article  Google Scholar 

  • Rosakis AJ (2002) Intersonic shear cracks and fault ruptures. Adv Phys 51: 1189–1257

    Article  ADS  Google Scholar 

  • Rosakis AJ, Xia KW, Lykotrafitis G, Kanamori H (2007) Dynamic shear rupture in frictional interfaces: speeds, directionality and modes. In: Schubert G, Kanamori H (eds) Treatise in geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 88(NB12): 359–370

    Article  Google Scholar 

  • Samudrala O, Huang Y, Rosakis AJ (2002) Subsonic and intersonic shear rupture of weak planes with a velocity weakening cohesive zone. J Geophys Res 107(B8): 2170

    Article  Google Scholar 

  • Shi ZQ, Ben-Zion Y (2006) Dynamic rupture on a bimaterial interface governed by slip-weakening friction. Geophys J Int 165(2): 469–484

    Article  ADS  Google Scholar 

  • Shi ZQ, Ben-Zion Y, Needleman A (2008) Properties of dynamic rupture and energy partition in a solid with a frictional interface. J Mech Phys Solids 56(1): 5–24

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Tsutsumi A, Shimamoto T (1997) High-velocity frictional properties of gabbro. Geophys Res Lett 24(6): 699–702

    Article  ADS  Google Scholar 

  • Tullis TE (2007) Friction of rock at earthquake slip rates. In: Kanamori H (ed) Treatise on geophysics, vol 4. Elsevier, Amsterdam, 131–152

  • Tullis TE, Goldsby DL (2003) Flash melting of crustal rocks at almost seismic slip rates. Eos Trans AGU 84(46): S51B–05

    Google Scholar 

  • Uenishi K, Rice JR (2003) Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. J Geophys Res 108(B1):2042

    Google Scholar 

  • Xia KW, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the Sub-rayleigh-to-supershear rupture transition. Science 303: 1859–1861

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yuan F, Prakash V (2008a) Slip weakening in rocks and analog materials at co-seismic slip rates. J Mech Phys Sol 56: 542–560

    Article  ADS  Google Scholar 

  • Yuan F, Prakash V (2008b) Use of a modified torsional Kolsky bar to study frictional slip resistance in rock-analog materials at coseismic slip rates. Int J Solids Struct 45: 4247–4263

    Article  MATH  Google Scholar 

  • Zheng G, Rice JR (1998) Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture. Bull Seismol Soc Am 88: 1466–1483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Lapusta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Lapusta, N. & Rosakis, A.J. Pulse-like and crack-like dynamic shear ruptures on frictional interfaces: experimental evidence, numerical modeling, and implications. Int J Fract 163, 27–39 (2010). https://doi.org/10.1007/s10704-010-9479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9479-4

Keywords

Navigation