Skip to main content
Log in

Effect of finite cracking on the electromechanical coupling properties of piezoelectric materials

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Cracks and porosities inside the piezoelectric materials can weaken the electromechanical coupling effect, and hence influence the electromechanical coupling behavior of piezoelectric materials considerably. This paper studies the effect of internal cracking on the effective properties of piezoelectric media. It focuses on the piezoelectric medium of finite size with finite crack. The mechanical and electric fields in the piezoelectric material and the crack are formulated by singular integral method. Effects of crack size, medium border, and electric permeability of the crack on the overall electromechanical properties of the piezoelectric material are obtained and displayed graphically. In addition, the crack tip coupling electromechanical field intensity factors are also presented as they are not available in open literature for a finite crack in a finite piezoelectric media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beom HG, Kim YH, Cho C, Kim CB (2006a) A crack with an electric displacement saturation zone in an electrostrictive material. Arch Appl Mech 76: 19–31

    Article  MATH  Google Scholar 

  • Beom HG, Kim YH, Cho C, Kim CB (2006b) Asymptotic analysis of an impermeable crack in an electrostrictive material subjected to electric loading. Int J Solids Struct 43: 6869–6886

    Article  MATH  Google Scholar 

  • Busche MJ, Hsia KJ (2001) Fracture and domain switching by indentation in barium titanate single crystals. Scripta Mater 44: 207–212

    Article  CAS  Google Scholar 

  • Chen W, Lynch CS (1998) A micro-electro-mechanical model for polarization switching of ferroelectric materials. Acta Mater 46: 5303–5311

    Article  CAS  Google Scholar 

  • Fu R, Zhang TY (2000) Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J Am Ceram Soc 83: 215–1218

    Google Scholar 

  • Gao H, Barnett DM (1996) An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture. Int J Fract 79: R25–R29

    Article  Google Scholar 

  • Gao H, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45: 491–510

    Article  CAS  ADS  Google Scholar 

  • Giannakopoulos AF, Suresh S (1999) Theory of indentation of piezoelectric materials. Acta Mater 47: 2153–2164

    Article  CAS  Google Scholar 

  • Govorukha VB, Loboda VV, Kamlah M (2006) On the influence of the electric permeability on an interface crack in a piezoelectric bimaterial compound. Int J Solids Struct 43: 1979–1990

    Article  MATH  CAS  Google Scholar 

  • Gruebner O, Kamlah M, Munz D (2003) Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng Fract Mech 70: 1399–1413

    Article  Google Scholar 

  • Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47: 793–802

    Article  Google Scholar 

  • Herrmann KP, Loboda VV, Govorukha VB (2001) On contact zone models for an electrically impermeable interface crack in a piezoelectric biomaterial. Int J Fract 111: 203–227

    Article  CAS  Google Scholar 

  • Hwang SC, Lynch CS, McMeeking RM (1995) Acta Metall Mater 43: 2073

    Article  CAS  Google Scholar 

  • Jeong KM, Kim IO, Beom HG (2004) Effect of electric displacement saturation on the stress intensity factor for a crack in a ferroelectric ceramic. Mech Res Commun 31: 371–382

    Article  Google Scholar 

  • Landis CM (2004) Electrically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41: 6291–6315

    Article  MATH  Google Scholar 

  • Lapusta Y, Loboda V (2009) Electro-mechanical yielding for a limited permeable crack in an interlayer between piezoelectric materials. Mech Res Commun 36: 183–192

    Article  MathSciNet  Google Scholar 

  • Li S (2003) On saturation-strip model of a permeable crack in a piezoelectric ceramic. Acta Mech 165: 47–71

    Article  MATH  Google Scholar 

  • Li W, McMeeking RM, Landis CM (2008) On the crack face boundary conditions in electromechanical fracture and an experimental protocol for determining energy release rates. Eur J Mech A/Solids 27: 285–301

    Article  MATH  Google Scholar 

  • Loboda V, Lapusta Y, Sheveleva A (2007) Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric biomaterial. Int J Solids Struct 44: 5538–5553

    Article  MATH  CAS  Google Scholar 

  • Loboda V, Lapusta Y, Govorukha V (2008) Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int J Eng Sci 46: 260–272

    Article  CAS  Google Scholar 

  • Needleman A (1990) An analysis of tensile decohesion along an interface. J Mech Phys Solids 38: 289–324

    Article  ADS  Google Scholar 

  • Nied HF (1987) Periodic array of cracks in a half plane subjected to arbitrary loading. ASME J Appl Mech 54: 642–648

    MATH  Google Scholar 

  • Parton VZ (1976) Fracture mechanics of piezoelectric materials. Acta Astronaut 3: 671–683

    Article  MATH  Google Scholar 

  • Parton VZ, Kudryavtsev BA (1988) Electromagnetoelasticity. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Rajapakse RKND, Zeng X (2001) Acta Mater 49: 877

    Article  CAS  Google Scholar 

  • Ru CQ (1999) Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramics. Int J Solids Struct 36: 869–883

    Article  MATH  Google Scholar 

  • Ru CQ, Mao X (1999) Conducting crack in a piezoelectric ceramics of limited electrical polarization. J Mech Phys Solids 47: 2125–2146

    Article  MATH  CAS  ADS  Google Scholar 

  • Schneider GA, Heye V (1999) J Eur Ceram Soc 19: 1299

    Article  CAS  Google Scholar 

  • Shindo Y, Murakami H, Horiguchi K et al (2002) Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked-beam methods. J Am Ceram Soc 85: 1243–1248

    Article  CAS  Google Scholar 

  • Shindo Y, Narita F, Horiguchi K et al (2003) Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test. Acta Mater 51: 4773–4782

    Article  CAS  Google Scholar 

  • Shindo Y, Narita F, Mikami M (2005) Double torsion testing and finite element analysis for determining the electric fracture properties of piezoelectric ceramics. J Appl Phys 97: 114109

    Article  ADS  CAS  Google Scholar 

  • Sun CT, Park SB (2000) Ferroelectrics 248: 79

    Article  CAS  Google Scholar 

  • Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40: 739–765

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Turner MR, Evans AG (1996) An experimental study of the mechanisms of crack extension along an oxide/metal interface. Acta Mater 44: 863–871

    Article  CAS  Google Scholar 

  • Wang TC (2000) Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int J Solids Struct 37: 6031–6049

    Article  MATH  Google Scholar 

  • Wang BL, Mai YW (2003) On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int J Eng Sci 41: 633–652

    Article  CAS  Google Scholar 

  • Zhang TY, Gao CF (2004) Fracture behavior of piezoelectric materials. Theor Appl Fracture Mech 41: 339–379

    Article  CAS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B.L., Han, JC. Effect of finite cracking on the electromechanical coupling properties of piezoelectric materials. Int J Fract 164, 201–212 (2010). https://doi.org/10.1007/s10704-010-9474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9474-9

Keywords

Navigation