Skip to main content

Advertisement

Log in

Configurational forces and the application to dynamic fracture in electroelastic medium

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Aimed at a fresh look onto the defect mechanics of electroelastic medium, the configurational force approach is developed for these materials. The notion of working is defined in a more general framework by introducing the conjugates of configurational force and the evolution velocity of migrating control volume. The balance of configurational forces is established through the invariance condition of working under the change of material observer. Eshelby relation is identified by using the invariance requirement of configurational working under reparameterization of the motion of the boundary of migrating control volume. Energy dissipation concentrated at crack tip is evaluated through the generalized mechanical version of the second law of thermodynamics applicable to migrating control volume. Theoretical investigation shows that the negative projection of the internal configurational force concentrated at the crack tip along the direction of crack propagation plays the role of energy release rate which depends on constitutive response of materials and is independent of the energy of free electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen X (2009) Crack driving force and energy-momentum tensor in electroelastodynamic fracture. J Mech Phys Solids 57: 1–9

    Article  MATH  CAS  ADS  Google Scholar 

  • Dascalu C, Maugin GA (1994) Energy-release rates and path-independent integrals in electroelastic crack propagation. Int J Eng Sci 32: 755–765

    Article  MATH  MathSciNet  Google Scholar 

  • Dascalu C, Maugin GA (1995a) On the dynamic fracture of piezoelectric materials. Q J Mech Appl Math 48: 237–254

    Article  MATH  MathSciNet  Google Scholar 

  • Dascalu C, Maugin GA (1995b) The thermoelastic material-momentum equation. J Elast 39: 201–212

    Article  MATH  MathSciNet  Google Scholar 

  • Eischen JW, Herrmann G (1987) Energy release rates and related balance laws in linear elastic defect mechanics. J Appl Mech 54: 388–392

    Article  MATH  Google Scholar 

  • Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc Lond A 244: 87–112

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Eshelby JD (1975) The energy-momentum tensor. J Elast 5: 321–335

    Article  MATH  MathSciNet  Google Scholar 

  • Fagerström M, Larsson R (2000) Approaches to dynamic fracture modelling at finite deformations. J Mech Phys Solids 56: 613–639

    Article  ADS  Google Scholar 

  • Green AE, Rivlin RS (1964) On Cauchy’s equations of motion. Z Angew Math Phys 15: 290–292

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin ME (1995) The nature of configurational forces. Arch Ration Mech Anal 131: 67–100

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin ME, Podio-Guidugli P (1996) Configurational forces and the basic laws for crack propagation. J Mech Phys Solids 44: 905–927

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Gurtin ME, Podio-Guidugli P (1998) Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. J Mech Phys Solids 48: 1343– 1378

    Article  MathSciNet  Google Scholar 

  • Gurtin ME (2000) Configurational forces as basic concepts of continuum physics. Springer, New York

    Google Scholar 

  • Gao H, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45: 491–510

    Article  CAS  ADS  Google Scholar 

  • Kienzler R, Herrmann G (2000) Mechanics in material space, with application to defect and fracture mechanics. Spring, Berlin

    Google Scholar 

  • Kalpakides VK, Dascalu C (2002) On the configurational force balance in thermomechanics. Proc R Soc Lond A 458: 3023–3039

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Maugin GA, Epstein M (1991) The elctroelastic energy-momentum tensor. Proc R Soc Lond A 433: 299–312

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Maugin GA (1993) Material inhomogenities in elasticity. Chapman and Hall, London

    Google Scholar 

  • Maugin GA (1995) Material forces: concepts and applications. Appl Mech Rev 48: 213–245

    Article  MathSciNet  Google Scholar 

  • Maugin GA (2000) On the universality of the thermomechanics of forces driving singular sets. Arch Appl Mech 70: 31–45

    Article  MATH  Google Scholar 

  • McMeeking RM (1990) A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dielectrics. Int J Eng Sci 28: 605–613

    Article  MATH  CAS  Google Scholar 

  • Pak YE, Herrmann G (1986) Conservation laws and the material momentum tensor for the elastic dielectric. Int J Eng Sci 24: 1365–1374

    Article  MATH  MathSciNet  Google Scholar 

  • Pak YE (1990) Crack extension force in a piezoelectric material. J Appl Mech 57: 647–653

    Article  MATH  Google Scholar 

  • Park SB, Sun CT (1995a) Effect of electric field on fracture of piezoelectric ceramics. Int J Fract 70: 203–216

    Article  Google Scholar 

  • Park SB, Sun CT (1995) Fracture criteria for piezoelectric ceramics. J Am Ceram Soc 78: 1475–1480

    Article  CAS  Google Scholar 

  • Qu ZC, Chen YH (2003) Discussion of the crack face electric boundary condition in piezoelectric fracture mechanics. Int J Fract 123: 151–155

    Article  Google Scholar 

  • Simha NK, Fischer FD, Kolednik O, Predan J, Shan GX (2005) Crack tip shielding or anti-shielding due to smooth and discontinuous material inhomogeneities. Int J Fract 135: 73–93

    Article  Google Scholar 

  • Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37: 7371–7391

    Article  MATH  MathSciNet  Google Scholar 

  • Wang BL, Mai YW (2003) On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int J Eng Sci 41: 633–652

    Article  CAS  Google Scholar 

  • Wang BL, Mai YW (2004) Impermeable crack and permeable crack assumptions, which one is more realistic. J Appl Mech 71: 575–578

    Article  MATH  ADS  Google Scholar 

  • Zhang TY, Zhao MH, Tong P (2002) Fracture of piezoelectric ceramics. Adv Appl Mech 38: 147–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Wu, L., Yu, H. et al. Configurational forces and the application to dynamic fracture in electroelastic medium. Int J Fract 164, 117–131 (2010). https://doi.org/10.1007/s10704-010-9464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9464-y

Keywords

Navigation