Skip to main content
Log in

Generalization of T and A integrals to time-dependent materials: analytical formulations

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper deals with the generalization of T-integral to crack growth process in viscoelastic materials. In order to implement this expression in a finite element software, a modelling form of this integral, called , is developed. The analytical formulation is based on conservative law, independent path integral, and a combination of real, virtual displacement fields, and real, virtual thermal fields introducing, in the same time, a bilinear form of free energy density F. According to the generalization of Noether’s method, the application of Gauss Ostrogradski’s theorem combined with curvilinear cracked contour, T v is obtained. By introducing a volume domain around crack tip, the modelling expression is also defined.. Finally, the viscoelastic generalization through a thermodynamic approach, called A v , is introduced by using a discretisation of the creep tensor according to a generalized Kelvin Voigt representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, Δa:

Crack length and crack increment

A1A2, B1B2:

Crack lips

A1), A2):

Areas enclosed by Γ1 and Γ2

A :

A-integral

:

Modeling form of A-integral

v :

Viscoelastic form of -integral

A v :

Generalization of A-integral to viscoelastic behavior

b :

Width specimen

F :

Helmholtz strain energy density

F :

Bilinear form of strain energy density

G v , G e :

Viscoelastic and elastic energy

G W , G s :

External and fracture energy

I1, I2:

Invariant notations

J ijkl :

Four order creep compliance tensor

J :

Rice’s integral

K :

Kinetic energy

\({^{u}K_{I}^{(p)}, ^{v}K_{II}^{(p)}}\) :

Real and virtual stress intensity factors in opening mode and shear mode induced by p th spring

\({k_{ijkl}^p}\) :

Spring rigidity components

\({\vec{n}}\) :

Normal vector of components n j

\({\vec{n}_1, \vec{n}_2}\) :

Normal vectors to contours Γ1 and Γ2

N :

Total number of Kelvin Voigt cells

\({s_j^{(p)}}\) :

Roots of characteristic equation

\({S_{11}^{(p)}, S_{22}^{(p)}, S_{12}^{(p)}, S_{33}^{(p)}}\) :

Compliance tensor components

S :

Surface domain

\({t, \xi, \phi, \varsigma}\) :

Time variables

t c :

Critical time

T :

T-integral

T p :

New analytical form of T-integral

T v :

Generalization of T-integral to viscoelastic behavior

u, v:

Real and virtual displacement fields of components u i and v i

u(p), v(p):

Real and virtual displacement fields in the p th spring

U e :

Elastic strain energy Voigt cell

W vis :

Viscous energy

W S :

Fracture energy

V :

Volume domain

p :

Spring of pth Kelvin

x1, x2:

Axis

α (x1, x2, t):

Spatial and temporal function

α t :

Expansion thermal coefficient

δL :

Lagrangian variation

\({\delta\tilde{u}, \delta\tilde{v}}\) :

Real and virtual Euleurian representation

\({\delta{u}^{{\ast}}, \delta{v}^{{\ast}}}\) :

Real and virtual Lagrangian representation

\({\eta_{ijkl}^p}\) :

Dash-pot viscosities components

λ, μ :

Lame’s coefficients

\({\vec{\theta}}\) :

Vector field

σ ij , ε ij :

Elastic stress and strain tensor component

\({\sigma_{ij}^{u}, \sigma_{ij}^v}\) :

Total real and virtual stress components

\({^{(p)}\sigma_{ij}^{u}, ^{(p)}\sigma_{ij}^{v}}\) :

Real and virtual stress components in the p th spring

V :

Contour around the crack tip

Δt :

Time increment

Γ1, Γ2 :

Surface contours

Ω:

Integration domain

References

  • Attigui M, Petit C (1997) Mixed-mode separation in dynamic fracture mechanics: new path independent integrals. Int J Fract 84: 19–36. doi:10.1023/A:1007358701493

    Article  Google Scholar 

  • Bui HD, Proix JM (1984) Lois de conservation en thermoélasticité linéaire. C.R Acad Sci Paris, pp 298–325

  • Bui HD, Proix JM (1985) Découplage des modes mixtes de rupture en thermoélasticité linéaire par les intégrales indépendantes du contour, Actes du Troisième Colloque Tendances Actuelles en Calcul de Structure, Bastia, pp 631–643

  • Bui HD (2007) Conservation laws, duality and symmetry loss in solid mechanics. Int J Fract 147: 163–172. doi:10.1007/s10704-007-9145-7

    Article  MATH  Google Scholar 

  • Chazal C, Dubois F (2001) A new incremental formulation in the time domain of crack initiation in an orthotropic linearly viscoelastic solid. Mech Time-Depend Mater 5: 229–253. doi:10.1023/A:1017922223094

    Article  Google Scholar 

  • Chen FMK, Shield RT (1977) Conservation laws in elasticity of J-integral type. J Appl Mech Phys 28: 1–22

    Article  MATH  CAS  MathSciNet  Google Scholar 

  • Destuynder P, Djaoua M, Lescure S (1983) Some remarks on elastic fracture mechanics. J Mec Theor et Appl 2: 113–135

    MATH  Google Scholar 

  • Donea J, Giuliani S, Halleux JP (1982) An arbitrary—Lagrangian-Euleurian finite element methods for transient dynamic fluid–structure—interactions. Compos Methods Appl Mech Eng 33: 689–723

    Article  MATH  Google Scholar 

  • Dubois F, Chazal C, Petit C (1999) A finite element analysis of creep-crack growth in viscoelastic media. Mech Time-Depend Mater 2: 269–286. doi:101023A1009831400270

    Article  Google Scholar 

  • Dubois F, Randriambololona H, Petit C (2005) Creep in wood under variable climate condition: numerical modelling and experimental validation. Mech Time-Depend Mater 9: 173–202. doi:10.1007/s11043-005-1083-z

    Article  ADS  Google Scholar 

  • Moutou Pitti R, Dubois F, Pop O, Sauvat N, Petit C (2007a) Intégrale Mv pour la propagation de fissure dans un milieu viscoélastique. C.R Mecanique 335: 727–731. doi:10.1016/j.crme.2007.07.004

    MATH  Google Scholar 

  • Moutou Pitti R, Dubois F, Petit C et al (2007b) Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the Mθν. Int J Fract 145: 181–193. doi:10.1007/s10704-007-9111-4

    Article  Google Scholar 

  • Moutou Pitti R, Dubois F, Petit C et al (2008a) A new M integral parameter for mixed mode crack growth in orthotropic viscoelastic material. Eng Fract Mech 75: 4450–4465. doi:10.1016/j.engfracmech.2008.04.021

    Article  Google Scholar 

  • Moutou Pitti R, Dubois F, Pop O (2008b) Mixed-mode fracture in viscoelastic material. In: Proceeding of XXII international congress of theoretical and applied mechanics. Adelaide, Australia

  • Moutou Pitti R (2008c) Mixed mode fracture separation in viscoelastic orthotropic materials: modelling and experimentation. Ph.D. thesis, Limoges University, http://www.unilim.fr/theses/2008/sciences/2008limo4025/notice.htm. Accessed 23 Jan 2009

  • Noether E (1971) Invariant variations problems. Trans Theor Stat Phys 1: 183–207

    Article  MathSciNet  ADS  Google Scholar 

  • Noether E (1975) Invariant variations problems. Trans Theor Stat Phys 1: 183–207

    MathSciNet  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain conservations by notches and cracks. J Appl Mech 35: 379–385

    Google Scholar 

  • Sih GC (1974) Strain energy density factor applied to mixed mode crack problems. Int J Fract 10: 305–321

    Article  Google Scholar 

  • Staverman AJ, Schwarzl P (1952) Thermodynamics of viscoelastic behaviour. Proc Acad Sci 55: 474–492

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostand Moutou Pitti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moutou Pitti, R., Dubois, F. & Petit, C. Generalization of T and A integrals to time-dependent materials: analytical formulations. Int J Fract 161, 187–198 (2010). https://doi.org/10.1007/s10704-010-9453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9453-1

Keywords

Navigation