Skip to main content

Crack nucleation in a peridynamic solid

Abstract

A condition for the emergence of a discontinuity in an elastic peridynamic body is proposed, resulting in a material stability condition for crack nucleation. The condition is derived by determining whether a small discontinuity in displacement, superposed on a possibly large deformation, grows over time. Stability is shown to be determined by the sign of the eigenvalues of a tensor field that depends only on the linearized material properties. This condition for nucleation of a discontinuity in displacement can be interpreted in terms of the dynamic stability of plane waves with very short wavelength. A numerical example illustrates that cracks in a peridynamic body form spontaneously as the body is loaded.

This is a preview of subscription content, access via your institution.

References

  1. Agwai A, Guven I, Madenci E (2008) Peridynamic theory for failure prediction in multilayer thin-film structures of electronic packages. In: 2008 electronic components and technology conference. IEEE, pp 1614–1619

  2. Agwai A, Guven I, Madenci E (2008) Peridynamic theory for impact damage prediction in electronic packages due to drop. In: 2008 electronic components and technology conference. IEEE, pp 1048–1053

  3. Agwai A, Guven I, Madenci E (2009) Damage prediction for electronic package drop test using finite element and peridynamic theory. In: 2008 electronic components and technology conference. IEEE, pp 565–569

  4. Askari E, Xu J, Silling S (2006) Peridynamic analysis of damage and failure in composites. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, NV, AIAA2006-88

  5. Bazant ZP, Belytschko T (1985) Wave propagation in a strain-softening bar: exact solution. J Eng Mech (ASCE) 111: 381–389

    Article  Google Scholar 

  6. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58: 1873–1905

    MATH  Article  Google Scholar 

  7. Bobaru F (2007) Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model Simul Mater Sci Eng 15: 397–417

    Article  ADS  Google Scholar 

  8. Colavito KW, Kilic B, Celik E, Madenci E, Askari E, Silling S (2007) Effect of void content on stiffness and strength of composites by a peridynamic analysis and static indentation test. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Honolulu, HI, AIAA2007-2251

  9. Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54: 1811–1842

    MATH  Article  MathSciNet  ADS  Google Scholar 

  10. Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237: 1250–1258

    Article  CAS  Google Scholar 

  11. Hill R (1962) Acceleration waves in solids. J Mech Phys Solids 10: 1–16

    MATH  Article  MathSciNet  ADS  Google Scholar 

  12. Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156: 165–177

    Article  Google Scholar 

  13. Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90: 141–151

    Article  Google Scholar 

  14. Klein P, Gao H (1998) Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng Fract Mech 61: 21–48

    Article  Google Scholar 

  15. Knowles JK, Sternberg E (1975) On the ellipticity of the equations of nonlinear elastostatics for a special material. J Elast 5: 341–361

    MATH  Article  MathSciNet  Google Scholar 

  16. Knowles JK, Sternberg E (1978) On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J Elast 8: 329–379

    MATH  Article  MathSciNet  Google Scholar 

  17. Kunin IA (1983) Elastic media with microstructure II: three-dimensional models. Springer, Berlin

    MATH  Google Scholar 

  18. Leroy Y, Ortiz M (1989) Finite element analysis of strain localization in frictional materials. Int J Numer Anal Methods Geomech 13: 53–74

    Article  Google Scholar 

  19. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23: 371–394

    Article  ADS  Google Scholar 

  20. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209

    MATH  Article  MathSciNet  ADS  Google Scholar 

  21. Silling SA (2003) Dynamic fracture modeling with a meshfree peridynamic code. In: Bathe KJ (eds) Computational fluid and solid mechanics. Elsevier, Amsterdam, pp 641–644

    Google Scholar 

  22. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83: 1526–1535

    Article  Google Scholar 

  23. Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech 40: 395–409

    MATH  Article  Google Scholar 

  24. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88: 151–184

    MATH  Article  MathSciNet  Google Scholar 

  25. Silling SA (2010) Linearized theory of peridynamic states. J. Elast. doi:10.1007/s10659-009-9234-0

  26. Xu J, Askari A, Weckner O, Razi H, Silling S (2007) Damage and failure analysis of composite laminates under biaxial loads. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Honolulu, HI, AIAA2007-2315

  27. Xu J, Askari A, Weckner O, Silling S (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21: 187–194

    Article  Google Scholar 

  28. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53: 705–728

    MATH  Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Silling.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silling, S.A., Weckner, O., Askari, E. et al. Crack nucleation in a peridynamic solid. Int J Fract 162, 219–227 (2010). https://doi.org/10.1007/s10704-010-9447-z

Download citation

Keywords

  • Crack nucleation
  • Material stability
  • Peridynamic
  • Elasticity

Mathematics Subject Classification (2000)

  • 74B15