Skip to main content
Log in

Application of extended Mohr–Coulomb criterion to ductile fracture

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The Mohr–Coulomb (M–C) fracture criterion is revisited with an objective of describing ductile fracture of isotropic crack-free solids. This criterion has been extensively used in rock and soil mechanics as it correctly accounts for the effects of hydrostatic pressure as well as the Lode angle parameter. It turns out that these two parameters, which are critical for characterizing fracture of geo-materials, also control fracture of ductile metals (Bai and Wierzbicki 2008; Xue 2007; Barsoum 2006; Wilkins et al. 1980). The local form of the M–C criterion is transformed/extended to the spherical coordinate system, where the axes are the equivalent strain to fracture \({\bar \varepsilon_f}\) , the stress triaxiality η, and the normalized Lode angle parameter \({\bar \theta}\) . For a proportional loading, the fracture surface is shown to be an asymmetric function of \({\bar \theta}\). A detailed parametric study is performed to demonstrate the effect of model parameters on the fracture locus. It was found that the M–C fracture locus predicts almost exactly the exponential decay of the material ductility with stress triaxiality, which is in accord with theoretical analysis of Rice and Tracey (1969) and the empirical equation of Hancock and Mackenzie (1976), Johnson and Cook (1985). The M–C criterion also predicts a form of Lode angle dependence which is close to parabolic. Test results of two materials, 2024-T351 aluminum alloy and TRIP RA-K40/70 (TRIP690) high strength steel sheets, are used to calibrate and validate the proposed M–C fracture model. Another advantage of the M–C fracture model is that it predicts uniquely the orientation of the fracture surface. It is shown that the direction cosines of the unit normal vector to the fracture surface are functions of the “friction” coefficient in the M–C criterion. The phenomenological and physical sound M–C criterion has a great potential to be used as an engineering tool for predicting ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • ABAQUS (2005) User’s manual, version 6.5, Hilbbit, Karlsson and Sorensen Inc.

  • Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63: 760–788

    Article  MATH  Google Scholar 

  • Bai Y (2008) Effect of loading history on necking and fracture. PhD thesis, Massachusetts Institute of Technology, 2008

  • Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24(6): 1071–1096

    Article  MATH  CAS  Google Scholar 

  • Bai Y, Teng X, Wierzbicki T (2009) On the application of stress triaxiality formula for plane strain fracture testing. J Eng Mater Technol 131(2), April 2009

  • Bai Y, Luo M, Li Y, Wierzbicki T (2008) Calibration of TRIP steel sheet (RA-K40/70) for fracture. Technical report, Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, Cambridge, MA

  • Bao Y (2003) Prediction of ductile crack formation in uncracked bodies. PhD thesis, Massachusetts Institute of Technology

  • Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1): 81–98

    Article  Google Scholar 

  • Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech 72(7): 1049–1069

    Article  Google Scholar 

  • Barlat F, Yoon JW, Cazacu O (2007) On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plast 23(5): 876–896

    Article  MATH  CAS  Google Scholar 

  • Barsoum I (2006) Ductile failure and rupture mechanisms in combined tension and shear. PhD thesis, Royal Institute of Technology (KTH), Stockholm, Sweden

  • Barsoum I, Faleskog J (2007) Rupture mechanisms in combined tension and shear—experiments. Int J Solids Struct 44(6): 1768–1786

    Article  MATH  CAS  Google Scholar 

  • Beese A, Luo M, Li Y, Bai Y, Wierzbicki T (2009) Partially coupled anisotropic fracture model for sheets. submitted to Engineering Fracture Mechanics for publication

  • Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill, New York

    MATH  Google Scholar 

  • Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met 96: 33–39

    CAS  Google Scholar 

  • Coulomb C (1776) Essai sur une application des regles des maximis et minimis a quelues problemes de statique relatifs a lć6architecture. Mem Acad Roy des Sci

  • Dunand M, Mohr D (2009) Determination of (multiaxial) ductile fracture properties of trip steel sheets using notched tensile specimens, report 193. Technical report, Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, Cambridge, MA

  • Fossum A, Brannon R (2005) The sandia geomodel: theory and user’s guide. Technical report, Sandia National Laboratories, Albuquerque, NM and Livermore, CA

  • Fossum A, Brannon R (2006) On a viscoplastic model for rocks with mechanism-dependent characteristic times. Acta Geotechnica 1: 89–106

    Article  Google Scholar 

  • Gao X, Zhang T, Hayden M, Roe C (2009) Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy. Int J Plast 25(12): 2366–2382

    Article  CAS  Google Scholar 

  • Gurson AL (1975) Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction. PhD thesis, Brown University

  • Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24(2–3): 147–160

    Article  ADS  Google Scholar 

  • Hosford W (1972) A generalized isotropic yield criterion. J Appl Mech 39: 607

    Google Scholar 

  • Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1): 31–48

    Article  Google Scholar 

  • Karafillis AP, Boyce MC (1993) A general anisotropic yield criterion using bounds and a transformation weighting tensor. J Mech Phys Solids 41(12): 1859–1886

    Article  MATH  CAS  ADS  Google Scholar 

  • Korkolis YP, Kyriakides S (2008) Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int J Plast 24(3): 509–543

    Article  MATH  CAS  Google Scholar 

  • Lee Y-W (2005) Fracture prediction in metal sheets. PhD thesis, Massachusetts Institute of Technology

  • Lund A, Schuh C (2004) The mohr-coulomb criterion from unit shear processes in metallic glass. Intermetallics 12(10–11): 1159–1165

    Article  CAS  Google Scholar 

  • Mackenzie AC, Hancock JW, Brown DK (1977) On the influence of state of stress on ductile failure initiation in high strength steels. Eng Fract Mech 9(1): 167–168

    Article  CAS  Google Scholar 

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  • McClintock FA (1968) A criterion of ductile fracture by the growth of holes. J Appl Mech 35: 363–371

    Google Scholar 

  • Mohr O (1914) Abhandlungen aus dem Gebiete der Technischen Mechanik (2nd ed). Ernst, Berlin

    Google Scholar 

  • Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A/Solids 27(1): 1–17

    Article  MATH  Google Scholar 

  • Palchik V (2006) Application of mohr-coulomb failure theory to very porous sandy shales. Int J Rock Mech Mining Sci 43(7): 1153–1162

    Article  Google Scholar 

  • Pfestorf M (2005) The application of multiphase steel in the body-in white. In Great designs in 2005 steel seminar presentations

  • Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17: 201–217

    Article  ADS  Google Scholar 

  • Storen S, Rice JR (1975) Localized necking in thin sheets. J Mech Phys Solids 23(6): 421–441

    Article  ADS  Google Scholar 

  • Teng X (2004) High velocity impact fracture. PhD thesis, Massachusetts Institute of Technology

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Materialia 32: 157– 169

    Google Scholar 

  • Wierzbicki T, Xue L (2005b) On the effect of the third invariant of the stress deviator on ductile fracture. Technical report, Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, Cambridge, MA

  • Wierzbicki T, Bao Y, Bai Y (2005a) A new experimental technique for constructing a fracture envelope of metals under multi-axial loading. Proceedings of the 2005 SEM annual conference and exposition on experimental and applied mechanics. pp 1295–1303

  • Wierzbicki T, Bao Y, Lee Y-W, Bai Y (2005b) Calibration and evaluation of seven fracture models. Int J Mech Sci 47(4–5): 719–743

    Article  Google Scholar 

  • Wilkins ML, Streit RD, Reaugh JE (1980) Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests, ucrl-53058. Technical report, Lawrence Livermore Laboratory, Livermore, California

  • Xu B, Liu X (1995) Applied mechanics: elasticity and plasticity. Tsinghua University Press, Beijing

    Google Scholar 

  • Xue L (2007) Ductile fracture modeling—theory, experimental investigation numerical verification. PhD thesis, Massachusetts Institute of Technology

  • Yang F, Sun Q, Hu W (2009) Yield criterions of metal plasticity in diffierent stress states. Acta Metallurgica Sinica (English Letters). 22(2): 123–130

    Article  CAS  Google Scholar 

  • Zhao J (2000) Applicability of mohr-coulomb and hoek-brown strength criteria to the dynamic strength of brittle rock. Int J Rock Mech Mining Sci 37(7): 1115–1121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanli Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Wierzbicki, T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract 161, 1–20 (2010). https://doi.org/10.1007/s10704-009-9422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9422-8

Keywords

Navigation