Skip to main content
Log in

On the dynamic fragmentation of glass: a meso-damage model

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents an anisotropic damage model to deal with the fragmentation induced by impact loadings on glass samples. As small-scale (i.e. sub-element) damage is described as well as cracks extending above the element scale, an approach referred to as “meso-damage” is developed. The latter, which is based on the knowledge of random distributions of initiation sites, predicts different regimes such as single or multiple fragmentation. The experimental opening crack pattern obtained in edge-on-impact test is reproduced numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brajer X, Hild F, Roux S, Gy R (2002) Behavior of soda-lime glasses impacted by a soft bullet: experimental and numerical investigations. Proceedings 14th Dymat Technical Meeting, (EURODYMAT), pp 35–44

  • Brajer X, Forquin P, Gy R, Hild F (2003) The role of surface and volume defects in the fracture of glass under quasi-static and dynamic loadings. J Non Cryst Solids 316: 42–53

    Article  CAS  ADS  Google Scholar 

  • Brara A, Klepaczko J (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25: 387–409

    Article  Google Scholar 

  • Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked system. Int J Solids Struct 12: 81–97

    Article  MATH  Google Scholar 

  • Cagnoux J (1985) Déformation et ruine d’un verre pyrex soumis à un choc intense: étude expérimentale et modélisation du comportement. Thèse d’Etat, University of Poitiers

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22): 2899–2938

    Article  MATH  Google Scholar 

  • Davies DGS (1973) The statistical approach to engineering design in ceramics. Proc Br Ceram Soc 22: 429–452

    Google Scholar 

  • den Reijer PC (1991) Impact on Ceramic Faced Armor. PhD Dissertation, Delft Technical University

  • Denoual C, Cottenot CE, Hild F (1996) On the identification of damage during impact of a ceramic by a hard projectile. In: Proceedings 16th international conference on BALLISTICS. APDS, Arlington, pp 541–550

  • Denoual C, Cottenot CE, Hild F (1998) Analysis of the Degradation Mechanisms in an Impacted Ceramic. In: Schmidt SC, Dandekar DP, Forbes JW (eds) Proceedings Shock Compression of Condensed Matter. AIP Press, New York, pp 427–430

    Google Scholar 

  • Denoual C, Hild F (2000) A damage model for the dynamic fragmentation of brittle solids. Comp Methods Appl Mech Eng 183: 247–258

    Article  MATH  Google Scholar 

  • Denoual C, Hild F (2002) Dynamic fragmentation of brittle solids: a multi-scale model. Eur J Mech A/Solids 21(1): 105–120

    Article  MATH  Google Scholar 

  • EN1063 standard, glass in building—Security glazing—Testing and classification of resistance against bullet attack, CEN European Committee for Standardization (1999)

  • Espinosa HD, Zavattieri PD, Dwivedi SK (1998) A finite deformation continuum/discrete model for the description of fragmentation and damage in brittle materials. J Mech Phys Solids 46: 1909–1942

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Forquin P, Tran L, Louvigné P-F, Rota L, Hild F (2003) Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics. Int J Impact Eng 28: 1061–1076

    Article  Google Scholar 

  • Forquin P, Hild F (2008) Dynamic fragmentation of an ultra-high strength concrete during edge-on impact tests. ASCE J Eng Mech 134(4): 302–315

    Article  Google Scholar 

  • Freudenthal AM (1968) Statistical approach to brittle fracture. In: Liebowitz H (eds) Fracture. Academic Press, New York, pp 591–619

    Google Scholar 

  • Grady DE, Kipp ME (1980) Continuum modeling of explosive fracture in oil shale. Int J Rock Min Sci & Geomech Abstr 17: 147–157

    Article  Google Scholar 

  • Graff KF (1975) Wave motion in elastic solids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Grange S, Forquin P, Mencacci S, Hild F (2008) On the dynamic fragmentation of two limestones using edge-on impact tests. Int J Impact Eng 35(9): 977–991

    Article  Google Scholar 

  • Gulino R, Phoenix SL (1991) Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite. J Mater Sci 26(11): 3107–3118

    Article  CAS  ADS  Google Scholar 

  • Gy R, Guillemet C (1992) Characterization of a mode of rupture of glass at 610°C. In: Pye LD, Course WCL, Stevens HJ (eds) The physics of non-crystalline solids. Taylor and Francis, London

    Google Scholar 

  • Hiermaier S, Riedel W (1997) Numerical simulation of failure in brittle materials using smooth particle hydrodynamics. Proceedings New models and numerical codes for schock wave processes in condensed media

  • Hild F, Brajer X, Denoual C, Forquin P (2003) On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials. Comput Struct 81(12): 1241–1253

    Article  Google Scholar 

  • Hornemann U, Kalthoff JF, Rothenhäusler H, Senf H, Winkler S (1984) Experimental investigation of wave and fracture propagation in glass—slabs loaded by steel cylinders at high impact velocities. EMI report E 4/84, Weil am Rhein (Germany)

  • Jeulin D (1991) Modèles morphologiques de structures aléatoires et changement d’échelle. Thèse d’Etat, University of Caen

  • Johnson GR, Holmquist TJ (1992) An improved computational constitutive model for brittle materials. High Pres Sci Technol 2: 981–984

    Google Scholar 

  • Lemaitre J (1992) A course on damage mechanics. Springer, Berlin

    MATH  Google Scholar 

  • Libersky LD, Petscheck AG (1993) High strain lagrangian hydrodynamics. J Comp Phys 109: 67–75

    Article  MATH  CAS  ADS  Google Scholar 

  • Margolin LG (1983) Elasticity moduli of a cracked body. Int J Fract 22: 65–79

    Article  Google Scholar 

  • Mastilovic S, Krajcinovic D (1999) High-velocity expansion of a cavity within a brittle material. J Mech Phys Solids 47: 577–600

    Article  MATH  CAS  ADS  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30: 543–574

    Article  ADS  Google Scholar 

  • Oakley DR (1996) An empirical study of the effect of stressed area on the strength of float glass surfaces. J Non-Cryst Solids 196: 134–138

    Article  CAS  ADS  Google Scholar 

  • Pugh EM, Heine-Geldern RV, Foner S, Mutschler EC (1952) Glass cracking caused by high explosives. J Appl Phys 23: 48–53

    Article  CAS  ADS  Google Scholar 

  • Rabotnov YN (1969) Creep problems in structural members. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Rajendran AM (1994) Modeling the impact behavior of AD85 ceramic under multiaxial loading. Int J Impact Eng 15(6): 749–768

    Article  Google Scholar 

  • Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90: 83–102

    Article  CAS  Google Scholar 

  • Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45(4): 535–563

    Article  CAS  ADS  Google Scholar 

  • Strassburger E, Patel P, McCauley JW, Kovalchick C, Ramesh KT, Templeton DW (2007) High-speed transmission shadowgraphic and dynamic photoelasticity study of stress wave and impact damage propagation in transparent materials and laminates using the edge-on impact method. Proceedings 23rd international symposium on ballistics

  • Taylor LM, Chen E-P, Kuszmaul JS (1986) Microcrack-induced damage accumulation in brittle rocks under dynamic loading. Comp Methods Appl Mech Eng 55: 301–320

    Article  MATH  Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of materials. Roy Swed Inst Eng Res, Report 151

  • Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42: 1397–1434

    Article  MATH  ADS  Google Scholar 

  • Zhou F, Molinari J-F (2004) Stochastic fracture of ceramics under dynamic tensile loading. Int J Solids Struct 41: 6573–6596

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Hild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brajer, X., Hild, F. & Roux, S. On the dynamic fragmentation of glass: a meso-damage model. Int J Fract 163, 121–131 (2010). https://doi.org/10.1007/s10704-009-9421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9421-9

Keywords

Navigation