Skip to main content
Log in

Dynamic fragmentation process in concrete under impact and spalling tests

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Intense damages as scabbing on front face, spalling on rear face, radial cracks are observed in concrete structures when subjected to the impact of a kinetic striker. To characterize the dynamic strength and damage of concretes under such loadings one may perform spalling tests and EOI (edge-on impact) tests. Both tests have been conducted with dry and wet specimens of a micro-concrete named MB50. The tests revealed a remarked effect of strain-rate and free water on the dynamic response of the concrete. In parallel, bending tests and direct tensile tests have been performed with dry and saturated concrete samples considering large and small effective volumes and the results have been compared with five sets of data given in the literature with the same material. A scale effect is observed in agreement with prediction of Weibull theory. Moreover, an anisotropic damage model that describes the initiation of cracks and the obscuration of critical defects under high strain-rate tensile loading is presented. It allows accounting for the influence of loading-rate and free-water on the dynamic strength and damage of concrete observed in EOI and spalling tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover Publications, Inc, New York

    Google Scholar 

  • Benz W, Asphaug E (1995) Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Commun 87: 253–265

    Article  MATH  CAS  ADS  Google Scholar 

  • Bernier G, Dalle JM (1998) Rapport d’essais de caractérisation des mortiers, Science Pratique S.A

  • Bluhm JI (1969) Fracture arrest, V, l–63. In: Liebowitz H (eds) Fracture. Academic Press, New York

    Google Scholar 

  • Brajer X, Forquin P, Gy R, Hild F (2003) The role of surface and volume defects in the fracture of glass under quasi-static and dynamic loadings. J Non Crystal Solids 316: 42–53

    Article  CAS  ADS  Google Scholar 

  • Brara A, Camborde F, Klepaczko JR, Mariotti C (2001) Experimental and numerical study of concrete at high strain rates in tension. Mech Mat 33: 33–45

    Article  Google Scholar 

  • Broek D (1982) Elementary engineering fracture mechanics. Martinus Nijhoff, The Hague

    Google Scholar 

  • Buzaud E (1998) Performances mécaniques et balistiques du microbéton MB50. DGA/Centre d’Etudes de Gramat. Report

  • Cadoni E, Labibes K, Albertini C, Berra M, Giangrasso M (2001) Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels. Mat Struct 34: 21–26

    Article  CAS  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938

    Article  MATH  Google Scholar 

  • Clayton JD (2008) A model for deformation and fragmentation in crushable brittle solids. Int J Impact Eng 35: 269–289

    Article  Google Scholar 

  • Davies DGS (1973) The statistical approach to engineering design in ceramics. Proc Brit Ceram Soc 22: 429–452

    Google Scholar 

  • Denoual C (1998) Approche probabiliste du comportement à l’impact du carbure de silicium : application aux blindages moyens. Ph.D. thesis, LMT Cachan, France

  • Denoual C, Hild F (2000) A damage model for the dynamic fragmentation of brittle solids. Comput Methods Appl Mech Eng 183: 247–258

    Article  MATH  Google Scholar 

  • Denoual C, Hild F (2002) Dynamic fragmentation of brittle solids: a multi-scale model. Eur J Mech A/Solids 21: 105–120

    Article  MATH  Google Scholar 

  • Denoual C, Barbier G, Hild F (1997) A probabilistic approach for fragmentation of brittle materials under dynamic loading. Mech Solids Stuct 325: 685–691

    MATH  Google Scholar 

  • Donzé FV, Bouchez J, Magnier SA (1997) Modeling of fractures in rock blasting. Int J Rock Mech Min Sci 34: 1153–1163

    Article  Google Scholar 

  • Drugan WJ (2001) Dynamic fragmentation of brittle materials: analytical mechanics-based models. J Mech Phys Solids 49: 1181–1208

    Article  MATH  CAS  ADS  Google Scholar 

  • Erzar B, Forquin P (2009) An experimental method to determine the tensile strength of concrete at high rates of Strain. Exp Mech doi:10.1007/s11340-009-9284-z

  • Espinosa HD, Zavattieri PD, Dwivedi SK (1998) A finite deformation continuum/discrete model for the description of fragmentation and damage in brittle materials. J Mech Phys Solids 46(10): 1909–1942

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Forquin P (2003) Endommagement et fissuration de matériaux fragiles sous impact balistique, rôle de la microstructure. Ph.D. thesis, LMT Cachan, France

  • Forquin P, Hild F (2008) Dynamic fragmentation of an ultra-high strength concrete during edge-on impact tests. J Eng Mech 134: 302–315

    Article  Google Scholar 

  • Forquin P, Hild F (2009) A probabilistic damage model of the dynamic fragmentation process in brittle materials. Adv Appl Mech (submitted manuscript)

  • Forquin P, Tran L, Louvigné P-F, Rota L, Hild F (2003) Effect of aluminium reinforcement on the dynamic fragmentation of SiC ceramics. Int J Impact Eng 28: 1061–1076

    Article  Google Scholar 

  • Forquin P, Arias A, Zaera R (2008) Role of porosity in controlling the mechanical and impact behaviours of cement-based materials. Int J Impact Eng 35(3): 133–146

    Article  Google Scholar 

  • Forquin P, Gary G, Gatuingt F (2008) A testing technique for concrete under confinement at high rates of strain. Int J Impact Eng 35: 425–446

    Article  Google Scholar 

  • Forquin P, Safa K, Gary G (2009) Influence of free water on the quasi-static and dynamic strength of concrete in confined compression tests. Cement Con Res. doi:10.1016/j.cemconres.2009.09.024

  • Freund LB (1972) Crack propagation in an elastic solid subjected to general loading—constant rate of extension. J Mech Phys Solids 20: 129–140

    Article  ADS  Google Scholar 

  • Gatuingt F (1999) Prévision de la rupture des ouvrages en béton sollicités en dynamique rapide. Ph.D. thesis, LMT Cachan, France

  • Grady DE, Kipp ME (1985) Geometric statistics and dynamic fragmentation. J Appl Phys 58: 1210–1222

    Article  ADS  Google Scholar 

  • Grange S, Forquin P, Menacci S, Hild F (2008) On the dynamic fragmentation of two limestones using edge-on impact tests. Int J Impact Eng 35: 977–991

    Article  Google Scholar 

  • Gulino R, Phoenix SL (1991) Weibull strength statistics for graphite fibres measured from the break propagation in a model graphite/glass/epoxy microcomposite. J Mater Sci 26: 3107–3118

    Article  CAS  ADS  Google Scholar 

  • Hentz S, Donzé FV, Daudeville L (2004) Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput Struct 82: 2509–2524

    Article  Google Scholar 

  • Hibbitt HD, Karlsson BI, Sorensen P (2001) Abaqus 6.1 version, user’s manual

  • Hild F, Denoual C, Forquin P, Brajer X (2003) On the probabilistic–deterministic transition involved in a fragmentation process of brittle materials. Comput Struct 81: 1241–1253

    Article  Google Scholar 

  • Hild F, Forquin P, Silva ARC (2003) Single and multiple fragmentation of brittle geomaterials. Rev Franç Génie Civil 7: 973–1003

    Article  Google Scholar 

  • Hornemann U, Kalthoff JF, Rothenhaüsler H, Senf H, Winkler S (1984) Experimental investigation of wave and fracture propagation in glass—slabs loaded by steel cylinders at high impact velocities. EMI Report E4

  • Ibrahimbegovic A, Delaplace A (2003) Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material. Comput Struct 81: 1255–1265

    Article  Google Scholar 

  • Jeulin D (1991) Modèles morphologiques de structures aléatoires et de changement d’échelle. Ph.D. thesis, University of Caen, France

  • Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Klepaczko JR, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25: 387–409

    Article  Google Scholar 

  • Krieg RD (1978) A simple constitutive description for soils and crushable foams. Report SC-DR-7260883. Sandia National Laboratory

  • Lu Y, Xu K (2004) Modelling modelling of dynamic behaviour of concrete materials under blast loading. Int J Solids Struct 41: 131–143

    Article  CAS  MathSciNet  Google Scholar 

  • Maiti S, Rangaswamy K, Geubelle PH (2005) Mesoscale analysis of dynamic fragmentation of ceramics under tension. Acta Mater 53: 823–834

    Article  CAS  Google Scholar 

  • Novikov SA, Divnov II, Ivanov AG (1966) The study of fracture of steel, aluminium and copper under explosive loading. Fizika Metallov i Metallovedeniye 21(4): 608–615

    Google Scholar 

  • Rabczuk T, Eibl J (2006) Modelling dynamic failure of concrete with meshfree methods. Int J Impact Eng 32: 1878–1897

    Article  Google Scholar 

  • Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90: 83–102

    Article  CAS  Google Scholar 

  • Repetto EA, Radovitzky R, Ortiz M (2000) Finite element simulation of dynamic fracture and fragmentation of glass rods. Comput Methods Appl Mech Eng 183: 3–14

    Article  MATH  Google Scholar 

  • Riou P (1996) Contribution à l’étude de l’endommagement du carbure de silicium lors d’un impact basse énergie: application aux blindages. Ph.D. thesis, ENSMP, France

  • Riou P, Denoual C, Cottenot CE (1998) Visualization of the damage evolution in impacted silicon carbide Ceramics. Int J Impact Eng 21: 225–235

    Article  Google Scholar 

  • Rossi P (1991) A physical phenomenon which can explain the mechanical behaviour of concrete under high strain-rates. Mater Struct 154(43): 53–57

    Google Scholar 

  • Rossi P (1997) Strain rate effects in concrete structures: the LCPC experience. Mater Struct/materiaux ET Constr (Supplement):54–62

  • Shockey DA, Curran DR, Seaman L, Rosenberg JT, Petersen CF (1974) Fragmentation of rocks under dynamic loads. Int J Rock Mech Min Sci 11: 303–317

    Article  Google Scholar 

  • Strassburger E, Senf H (1994) Experimental investigations of wave and fracture phenomena in impacted ceramics. EMI report 3/94

  • Swenson DV, Taylor LM (1983) A finite element model for the analysis of tailored pulse stimulation of boreholes. Int J Num Anal Methods Geomech 7: 469–484

    Article  MATH  Google Scholar 

  • Toutlemonde F (1994) Résistance au choc des structures en béton: du comportement du matériau au calcul des ouvrages. Ph.D. thesis, LCPC

  • Wittel FK, Carmona HA, Kun F, Herrmann HJ (2008) Mechanisms in impact fragmentation. Int J Fract 154: 105–117

    Article  MATH  Google Scholar 

  • Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434

    Article  MATH  ADS  Google Scholar 

  • Zavattieri PD, Espinosa HD (2001) Grain level analysis of crack initiation and propagation in brittle materials. Acta mater 49: 4291–4311

    Article  CAS  Google Scholar 

  • Zheng D, Li Q (2004) An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity. Eng Fract Mech 71: 2319–2327

    Article  Google Scholar 

  • Zhou F, Molinari J-F, Ramesh KT (2005) A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. Int J Solids Struct 42: 5181–5207

    Article  MATH  Google Scholar 

  • Zhou F, Molinari J-F, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Frac Mech 72: 1383–1410

    Article  Google Scholar 

  • Zhou F, Molinari J-F, Ramesh KT (2006) Analysis of the brittle fragmentation of an expanding ring. Comp Mat Sci 37: 74–85

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Forquin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forquin, P., Erzar, B. Dynamic fragmentation process in concrete under impact and spalling tests. Int J Fract 163, 193–215 (2010). https://doi.org/10.1007/s10704-009-9419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9419-3

Keywords

Navigation