Skip to main content
Log in

Damage in impact fragmentation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Using a simple and generic molecular dynamics model, we study damage in a disc of interacting particles as the disc fragments upon impact with a wall. The damage, defined as the ratio of the number of bonds broken by the impact to the initial number of bonds, is found to increase logarithmically with the energy deposited in the system. This result implies a linear growth with damage for the total number of fragments and for the power law exponent of the fragment size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åström JA, Holian BL, Timonen J (2000) Universality in fragmentation. Phys Rev Lett 84: 3061

    Article  PubMed  ADS  Google Scholar 

  • Åström JA, Linna RP, Timonen J, Møller PF, Oddershede L (2004) Exponential and power-law mass distributions in brittle fragmentation. Phys Rev E 70: 026104

    Article  ADS  Google Scholar 

  • Behera B, Kun F, McNamara S, Herrmann HJ (2005) Fragmentation of a circular disc by impact on a frictionless plate. J Phys Condens Matter 17: S2439

    Article  CAS  ADS  Google Scholar 

  • Campi X, Krivine H, Sator N, Plagnol E (2000) Analyzing fragmentation of simple fluids with percolation theory. Eur Phys J D 11: 233–238

    CAS  ADS  Google Scholar 

  • Ching ESC, Yiu YY, Lo KF (1999) Energy dependence of mass distributions in fragmentation. Physica A 265: 119–128

    Article  CAS  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data, SIAM Review, to appear (preprint at arxiv:0706.1062)

  • Diehl A, Carmona HA, Araripe LE, Andrade JS Jr., Farias GA (2000) Phys Rev E 62: 4742–4746

    Article  CAS  ADS  Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic Press, Oxford

    Google Scholar 

  • Grady DE (2008) Fragment size distributions from the dynamic fragmentation of brittle solids. Int J Impact Eng 35: 1557

    Article  Google Scholar 

  • Holina BL, Grady DE (1988) Fragmentation by molecular dynamics: the microscopic “Big Bang”. Phys Rev Lett 60: 1355

    Article  ADS  Google Scholar 

  • Kadono T (1997) Fragment mass distribution of platelike objects. Phys Rev Lett 78: 1444

    Article  CAS  ADS  Google Scholar 

  • Kadono T, Arakawa M (2002) Crack propagation in thin glass plates caused by high velocity impact. Phys Rev E 65: 035107(R)

    Article  ADS  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103: 29759–29779

    Article  ADS  Google Scholar 

  • Kun F, Herrmann HJ (1999) Transition from damage to fragmentation in collision of solids. Phys Rev E 59: 2623–2632

    Article  CAS  ADS  Google Scholar 

  • Matsui T, Waza T, Kani K, Suzuki S (1982) Laboratory simulation of planetesimal collision. J Geophys Res 87: 10968

    Article  ADS  Google Scholar 

  • Meibom A, Balslev I (1996) Composite power laws in shock fragmentation. Phys Rev Lett 76: 2492

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mishra BK, Thornton C (2001) Impact breakage of particle agglomerates. Int J Min Process 61: 225–239

    Article  CAS  Google Scholar 

  • Moukarzel CF, Fernández-Sabido SF, Ruiz-Suárez JC (2007) Phase transition in liquid drop fragmentation. Phys Rev E 75: 061127

    Article  ADS  Google Scholar 

  • Myagkov NN, Shumikhin TA (2005) Critical behavior and energy dependence of mass distributions in impact fragmentation. Physica A 358: 423–436

    Article  ADS  Google Scholar 

  • Oddershede L, Dimon P, Bohr J (1993) Self-organized criticality in fragmenting. Phys Rev Lett 71: 3107

    Article  PubMed  ADS  Google Scholar 

  • Oddershede L, Meibom A, Bohr J (1998) Scaling analysis of meteorite shower mass distributions. Europhys Lett 43: 598

    Article  CAS  ADS  Google Scholar 

  • Sator N (2003) Clusters in simple fluids. Phys Rep 376: 1

    Article  MathSciNet  ADS  Google Scholar 

  • Sator N, Mechkov S, Sausset F (2008) Generic behaviours in impact fragmentation. Europhys Lett 81: 44002

    Article  ADS  Google Scholar 

  • Thornton C, Yin KK, Adams MJ (1996) Numerical simulation of the impact fracture and fragmentation of agglomerates. J Phys D Appl Phys 29: 424–435

    Article  CAS  ADS  Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91: 1921–1926

    Article  ADS  Google Scholar 

  • Verlet L (1967) Computer experiments on classical fluids. I thermodynamical properties of Lennard-Jones molecules. Phys Rev 159: 98

    Article  CAS  ADS  Google Scholar 

  • Wittel F, Kun K, Herrmann HJ, Kröplin BH (2004) Fragmentation of shells. Phys Rev Lett 93: 035504

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wittel FK, Carmona HA, Kun F, Herrmann HJ (2008) Mechanisms in impact fragmentation. Int J Fract 154: 105

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sator, N., Hietala, H. Damage in impact fragmentation. Int J Fract 163, 101–108 (2010). https://doi.org/10.1007/s10704-009-9406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9406-8

Keywords

Navigation