Skip to main content
Log in

Dynamic fragmentation of laser shock-melted tin: experiment and modelling

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as pyrotechnics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. Whereas spall fracture in solid materials has been extensively studied for many years, little data can be found yet about the evolution of this phenomenon after partial or full melting on compression or on release. Here, we present an investigation of dynamic fragmentation in laser shock-melted tin, from the “micro-spall” process (ejection of a cloud of fine droplets) occurring upon reflection of the compressive pulse from the target free surface, to the late rupture observed in the unspalled melted layer (leading to the formation of larger spherical fragments). Experimental results consist of time-resolved velocity measurements and post-shock observations of recovered targets and fragments. They provide original information regarding the loss of tensile strength associated with melting, the cavitation mechanism likely to occur in the melted metal, the sizes of the subsequent fragments and their ejection velocities. A theoretical description based on an energetic approach adapted to the case of a liquid metal is implemented as a failure criterion in a one-dimensional hydrocode including a multi-phase equation of state for tin. The resulting predictions of the micro-spall process are compared with experimental data. In particular, the use of a new experimental technique to quantify the fragment size distributions leads to a much better agreement with theory than previously reported. Finally, a complementary approach focused on cavitation is proposed to evaluate the role of this phenomenon in the fragmentation of the melted metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andriot P, Chapron P, Olive F (1982) Ejection of material from shocked surfaces of tin, tantalum and lead alloys. In: Nellis WJ, Seaman L, Graham RA (eds) Shock waves in condensed matter – 1981, AIP conference proceedings, vol 78, pp 505–508

  • Andriot P, Chapron P, Lambert V, Olive F (1984) Influence of melting on shocked free surface behaviour using Doppler laser interferometry and X-ray densitometry. In: Asay JR, Graham RA, Straub GK (eds) Shock waves in condensed matter – 1983. North-Holland Amsterdam, pp 277–280

  • Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2002) Spall fracture. Springer, New York

    Google Scholar 

  • Asay JR, Mix LP, Perry FC (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29(5): 284–287

    Article  CAS  ADS  Google Scholar 

  • Barker LM, Hollenbach RE (1970) Shock-wave studies of PMMA, fused silica and sapphire. J Appl Phys 41: 4208–4226

    Article  CAS  ADS  Google Scholar 

  • Blink JA, Hoover WG (1985) Fragmentation of suddenly heated liquids. Phys Rev A 32(2): 1027–1035

    Article  CAS  PubMed  ADS  Google Scholar 

  • Buy F, Voltz C, Llorca F (2006) Thermodynamically based equation of state for shock wave study: application to the design of experiments on tin. In: Furnish MD, Elert M, Russell TP, White CT (eds) Shock compression of condensed matter – 2005, AIP conference proceedings, vol 845, pp 41–44

  • Chapron P, Elias P, Laurent B (1988) Experimental determination of the pressure inducing melting in release for shock-loaded metallic samples. In: Schmidt SC, Holmes NC (eds) Shock waves in condensed matter – 1987, Elsevier, Amsterdam, pp 171–174

  • Cheret R, Chapron P, Elias P, Martineau J (1986) Mass ejection from the free surface of shock-loaded metallic samples. In: Gupta YM (ed) Shock waves in condensed matter – 1985. Plenum, New York, pp 651–654

  • Davison L, Grady DE, Shahinpoor M (1996) High pressure shock compression of solids II, dynamic fracture and fragmentation. Springer, New York

    MATH  Google Scholar 

  • de Rességuier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F (2007a) Experimental investigation of liquid spall in laser shock-loaded tin. J Appl Phys 101(1): 013506

    Article  ADS  Google Scholar 

  • de Rességuier T, Signor L, Dragon A, Severin P, Boustie M (2007b) Spallation in laser shock-loaded tin below and just above melting on release. J Appl Phys 102(7): 073535

    Article  ADS  Google Scholar 

  • de Rességuier T, Signor L, Dragon A, Boustie M, Berthe L (2008) On the dynamic fragmentation of laser shock-melted tin. Appl Phys Lett 92(13): 131910

    Article  ADS  Google Scholar 

  • Denoual C, Diani JM (2002) Cavitation in compressible visco-plastic materials. In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter – 2001, AIP conference proceedings, vol 620, pp 495–498

  • Elias P, Chapron P, Laurent B (1988) Detection of melting in release for a shock-loaded tin sample using the reflectivity measurement method. Opt Commun 66(2–3): 100–106

    Article  CAS  ADS  Google Scholar 

  • Eliezer S, Gilath I, Bar-Noy T (1990) Laser-induced spall in metals: experiment and simulation. J Appl Phys 67: 715–724

    Article  CAS  ADS  Google Scholar 

  • Grady DE (1988) The spall strength of condensed matter. J Mech Phys Solids 36(3): 353–384

    Article  ADS  Google Scholar 

  • Grady DE (1996) Spall and fragmentation in high-temperature metals. In: High-pressure shock compression of solids II (see ref. Davison et al. (1996) above), Chap. 9, pp 219–236

  • Hemsing WF (1979) Velocity sensing interferometer (VISAR) modification. Rev Sci Instrum 50: 73–78

    Article  CAS  PubMed  ADS  Google Scholar 

  • Johnson JN (1981) Dynamic fracture and spallation in ductile solids. J Appl Phys 52(4): 2812–2825

    Article  ADS  Google Scholar 

  • Kanel GI, Razorenov SV, Utkin AV, Grady DE (1996) The spall strength of metals at elevated temperature. In: Schmidt SC, Tao WC (eds) Shock compression of condensed matter – 1995, AIP conference proceedings, vol 370, pp 503–506

  • Lescoute E, de Rességuier T, Chevalier JM, Boustie M, Cuq-Lelandais JP, Berthe L (2009) Transverse shadowgraphy and new recovery techniques to investigate dynamic fragmentation of laser shock-loaded metals. 16th APS Shock conference, Nashville

  • Mabire C, Héreil PL (2000) Shock induced polymorphic transition and melting of tin. In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter – 1999, AIP conference proceedings, vol 505, pp 93–96

  • Mercier P, Benier J, Sollier A, Lescoute E, Cuq-Lelandais JP, Gay E, de Rességuier T, Berthe L, Boustie M, Nivard M, Claverie A (2009) Heterodyne Velocimetry measurements on solids under shock driven by high power lasers. 16th APS Shock conference, Nashville

  • Moshe E, Eliezer S, Dekel E, Henis Z, Ludmirsky A, Goldberg IB, Eliezer D (1999) Measurements of laser driven spallation of tin and zinc using an optical recording velocity interferometer system. J Appl Phys 86(8): 4242–4248

    Article  CAS  ADS  Google Scholar 

  • Rybakov AP, Rybakov IA (1995) Reaction of condensed matter to extremely short-duration and intense loading. Strength of solids and liquids under dynamic damage. Eur J Mech B/Fluids 14(2): 197–205

    Google Scholar 

  • Signor L, de Rességuier T, Roy G, Dragon A, Llorca F (2007a) Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues. In: Elert M, Furnish MD, Chau R, Holmes M, Nguyen J (eds) Shock compression of condensed matter – 2007, AIP conference proceedings, vol 955, pp 593–596

  • Signor L, Dragon A, de Rességuier T, Roy G, Llorca F (2007b) EMMC10, fragmentation of melted metals upon intense shock-wave loading. Experiment and modelling for a tin target. In: Nowacki WK, Zhao H (eds) Multi-phase and multi-components materials under dynamic loading, pp 273–282. ISBN 978-83-89687-16-6

  • Signor L (2008) PhD Thesis. Université de Poitiers, France

  • Signor L, Dragon A, Roy G, de Rességuier T, Llorca F (2008) Dynamic fragmentation of melted metals upon intense shock wave loading. Some modelling issues applied to a tin target. Arch Mech 60(4): 323–343

    MATH  Google Scholar 

  • Signor L, Roy G, Chanal PY, Héreil PL, Buy F, Voltz C, de Rességuier T, Dragon A (2009) Debris cloud ejection from shock-loaded tin melted on release or on compression. 16th APS Shock conference, Nashville

  • Stebnovskii SV (1998) Experimental investigation of pulsed stretching of cavitating media. J Appl Mech Tech Phys 39(5): 758–761

    Article  CAS  ADS  Google Scholar 

  • Stebnovskii SV (2007) Fragmentation of liquid and liquid-plastic media under unsteady strains. J Appl Mech Tech Phys 48(4): 519–524

    Article  CAS  ADS  Google Scholar 

  • Zellner MB, Grover M, Hammerberg JE, Hixson RS, Iverson AJ, Macrum GS, Morley KB, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD, Turley WD, Veeser L, Buttler WT (2007) Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces. J Appl Phys 102: 013522

    Article  ADS  Google Scholar 

  • Zhiembetov AK, Mikhaylov AL, Smirnov GS (2002) Experimental study of explosive fragmentation of metals melts. In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter – 2001, AIP conference proceedings, vol 620, pp 547–550

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. de Rességuier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rességuier, T., Signor, L., Dragon, A. et al. Dynamic fragmentation of laser shock-melted tin: experiment and modelling. Int J Fract 163, 109–119 (2010). https://doi.org/10.1007/s10704-009-9378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9378-8

Keywords

Navigation