International Journal of Fracture

, Volume 156, Issue 2, pp 165–177 | Cite as

Prediction of crack paths in a quenched glass plate by using peridynamic theory

  • Bahattin Kilic
  • Erdogan MadenciEmail author
Original Paper


The peridynamic theory is employed to predict crack growth patterns in quenched glass plates previously considered for an experimental investigation. The plates containing single and multiple pre-existing initial cracks are simulated to investigate the effects of peridynamic and experimental parameters on the crack paths. The critical stretch value in the peridynamic theory and the gap size between the heat reservoirs are determined to be the most significant parameters. The simulation results are in good agreement with the experimental observations published in the literature.


Peridynamic Prediction Crack growth Quenched glass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asa-Bedia M, Pomeau Y (1995) Crack instabilities of a heated glass strip. Phys Rev E 52: 4105–4113. doi: 10.1103/PhysRevE.52.4105 CrossRefADSGoogle Scholar
  2. Bahr H-A, Gerbatsch A, Bahr U, Weiss H-J (1995) Oscillatory instability in thermal cracking: a first-Order phase-transition phenomenon. Phys Rev E 52: 240–243. doi: 10.1103/PhysRevE.52.240 CrossRefADSGoogle Scholar
  3. Berger MJ, Bokhari SH (1987) A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans Comput C-36: 570–580. doi: 10.1109/TC.1987.1676942 CrossRefGoogle Scholar
  4. Bouchbinder E, Hentschel HE, Procaccia I (2003) Dynamical instabilities of quasistatic crack propagation under thermal stress. Phys Rev E 68: 036601–036614. doi: 10.1103/PhysRevE.68.036601 CrossRefADSGoogle Scholar
  5. Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16: 155–169. doi: 10.1007/BF00012619 CrossRefGoogle Scholar
  6. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10: 233–248. doi: 10.1016/0020-7225(72)90039-0 zbMATHCrossRefMathSciNetGoogle Scholar
  7. Eringen AC, Kim BS (1974a) Stress concentration at the tip of crack. Mech Res Commun 1: 233–237. doi: 10.1016/0093-6413(74)90070-6 CrossRefGoogle Scholar
  8. Eringen AC, Kim BS (1974b) On the problem of crack tip in nonlocal elasticity. In: Thoft-Christensen P (eds) Proceedings, Continuum Mechanics Aspects of Geodynamics and rock fracture mechanics. D. Reidel Publishing Co., Dordrecht, HollandGoogle Scholar
  9. Ferney BD, DeVary MR, Hsia KJ, Needleman A (1999) Oscillatory crack growth in glass. Scr Mater 41: 275–281. doi: 10.1016/S1359-6462(99)00161-X CrossRefGoogle Scholar
  10. Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313: 1–108. doi: 10.1016/S0370-1573(98)00085-4 CrossRefADSMathSciNetGoogle Scholar
  11. Furukawa H (1993) Propagation and pattern of crack in two dimensional dynamical lattice. Prog Theor Phys 90: 949–959. doi: 10.1143/PTP.90.949 CrossRefADSGoogle Scholar
  12. Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10: 507–523. doi: 10.1007/BF00155254 CrossRefGoogle Scholar
  13. Hayakawa Y (1994) Numerical study of oscillatory crack propagation through a two-dimensional crystal. Phys Rev E 49: R1804–R1807. doi: 10.1103/PhysRevE.49.R1804 CrossRefADSGoogle Scholar
  14. Hirata M (1931) Experimental studies on form and growth of cracks in glass plate. Sci Pap Inst Phys Chem Res 16: 172–195Google Scholar
  15. Kilic B (2008) Dissertation. The University of ArizonaGoogle Scholar
  16. Korn GA, Korn TM (2000) Mathematical handbook for scientists and engineers, 2nd Rev edn. Dover Publications, New YorkGoogle Scholar
  17. Kroner E (1967) Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3: 731–742. doi: 10.1016/0020-7683(67)90049-2 CrossRefGoogle Scholar
  18. Kunin IA (1982) Elastic media with microstructure I: one dimensional models. Springer-Verlag, BerlinzbMATHGoogle Scholar
  19. Kunin IA (1983) Elastic media with microstructure II: three-dimensional models. Springer-Verlag, BerlinzbMATHGoogle Scholar
  20. Marder M (1994) Instability of a crack in a heated strip. Phys Rev E 49: R51–R54CrossRefADSGoogle Scholar
  21. Pham V-B, Bahr H-A, Bahr U, Balke H, Weiss H-J (2008) Global bifurcation criterion for oscillatory crack path instability. Phys Rev E 77: 066114–066124. doi: 10.1103/PhysRevE.77.066114 CrossRefADSGoogle Scholar
  22. Pla O, Guinea F, Louis E, Ghaisas SV, Sander LM (2000) Straight cracks in dynamic brittle fracture. Phys Rev B 61: 11472–11486. doi: 10.1103/PhysRevB.61.11472 CrossRefADSGoogle Scholar
  23. Rogula D (1983) Nonlocal theory of material media. Springer-Verlag, BerlinGoogle Scholar
  24. Ronsin O, Heslot F, Perrin B (1995) Experimental study of quasistatic brittle crack propagation. Phys Rev Lett 75: 2352–2355. doi: 10.1103/PhysRevLett.75.2352 PubMedCrossRefADSGoogle Scholar
  25. Ronsin O, Perrin B (1997) Multi-fracture propagation in a directional crack growth experiment. Europhys Lett 38: 435–440. doi: 10.1209/epl/i1997-00264-2 CrossRefADSGoogle Scholar
  26. Ronsin O, Perrin B (1998) Dynamics of quasistatic directional crack growth. Phys Rev E 58: 7878–7886. doi: 10.1103/PhysRevE.58.7878 CrossRefADSGoogle Scholar
  27. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209. doi: 10.1016/S0022-5096(99)00029-0 zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struc 83: 1526–1535. doi: 10.1016/j.compstruc.2004.11.026 CrossRefGoogle Scholar
  29. Yang B, Ravi-Chandar K (2001) Crack path instabilities in a quenched glass plate. J Mech Phys Solids 49: 91–130. doi: 10.1016/S0022-5096(00)00022-3 zbMATHCrossRefADSGoogle Scholar
  30. Yoneyama S, Sakaue K, Kikuta H, Takashi M (2008) Observation of stress field around an oscillating crack tip in a quenched thin glass plate. Exp Mech 48: 367–374. doi: 10.1007/s11340-007-9078-0 CrossRefGoogle Scholar
  31. Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plate. Nature 362: 329–331. doi: 10.1038/362329a0 CrossRefADSGoogle Scholar
  32. Yuse A, Sano M (1997) Instabilities of quasi-static crack patterns in quenched glass plates. Physica D 108: 365–378. doi: 10.1016/S0167-2789(97)00011-0 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Aerospace and Mechanical EngineeringThe University of ArizonaTucsonUSA

Personalised recommendations