Skip to main content
Log in

Characterisation of formability behaviour of multiphase steels by micromechanical modelling

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Multiphase steels are new Advanced High Strength Steels (AHSS), which have been developed for the automobile industry for the purpose of reducing of car body weight. These steels offer an excellent combination of high strength and large elongation due to the coexistence of harder and softer phases in their microstructure. The advantageous properties of multiphase steels can be utilised by regulating the type, amount, formation and spatial distribution of the different constituent phases. To describe the influences of the heterogeneous microstructure on the mechanical properties and the complex fracture mechanisms, an approach is presented using Representative Volume Elements (RVEs) on a micro level. Three dimensional RVE simulations were conducted under considerations of metallographic analysis for a Dual Phase (DP) steel and a Transformation-Induced Plasticity (TRIP) steel. The Gurson–Tvergaard–Needleman (GTN) damage model was applied to investigate the local crack initiation in steel sheets during various forming processes. In conclusion, a failure prediction based on microstructure is proposed for the material characterisation in sheet metal forming of multiphase steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Abbasi FM, Nemes JA (2003) Micromechanical modeling of dual phase steels. Int J Mech Sci 45: 1449–1465. doi:10.1016/j.ijmecsci.2003.10.007

    Article  MATH  Google Scholar 

  • Bergström Y (1969) A dislocation model for the stress–strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile dislocations. Mater Sci Eng 5: 193–200. doi:10.1016/0025-5416(70)90081-9

    Google Scholar 

  • Bernauer G, Brocks W (2002) Micro-mechanical modelling of ductile damage and tearing—results of a European numerical round robin. Fatigue Fract Eng Mater Struct 25: 363–384. doi:10.1046/j.1460-2695.2002.00468.x

    Article  Google Scholar 

  • Bernauer G, Brocks W, Muehlich U, Steglich D, Werwer M (1999) Remark for application of the Gurson–Tvergaard–Needleman model. Technical Note GKSS/WMG/99/10, GKSS, 1999

  • Bouquerel J, Verbeken K, De Cooman BC (2006) Microstructure-based model for the static mechanical behaviour of multiphase steels. Acta Mater 54: 1443–1456. doi:10.1016/j.actamat.2005.10.059

    Article  CAS  Google Scholar 

  • Cornec A, Scheider I, Schwalbe KH (2003) On the practical application of the cohesive model. Eng Fract Mech 70:1963–1987. doi:10.1016/S0013-7944(03)00134-6

    Article  Google Scholar 

  • Dziallach S, Bleck W, Blumbach M, Hallfeldt T (2007) Sheet metal testing and flow curve determination under multiaxial conditions. Adv Eng Mater 9:987–994. doi:10.1002/adem.200700129

    Article  Google Scholar 

  • Final Report ULSAB (1998) UltraLight steel auto body. American Iron and Steel Institute, Washington, DC

  • Gammage J, Wilkinson D, Brechet Y, Embury D (2004) A model for damage coalescence in heterogeneous multi-phase materials. Acta Mater 52: 5255–5263. doi:10.1016/j.actamat.2004.07.009

    Article  CAS  Google Scholar 

  • Garrison WM Jr, Moody NR (1987) Ductile fracture. J Phys Chem Solids 48: 1035–1074. doi:10.1016/0022-3697(87)90118-1

    Article  ADS  CAS  Google Scholar 

  • Godereaux S, Vivet S, Beaudoin JF (2002) Application of TRIP steels in the automotive industry. In: De Cooman BC (ed) Proceedings of the international conference on TRIP-aided high strength ferrous alloys, Gent, 2002

  • Horvath CD, Fekete JR (2004) Opportunities and challenges for increased usage of advanced high strength steels in automotive applications. In: Speer J (ed) Proceedings of the international conference on advanced high strength sheet steels for automotive applications, Colorado, 2004

  • Kaluza WM, Lake M, Pesek L, Bleck W (2000) Modelling of mechanical properties and local deformation of multi phase high strength steels. In: Abstracts of the international congress on advanced materials, their processes and applications (Materials Week 2000), Munich, 25–28 September 2000

  • Kikuma T, Nakazima K (1971) Effects of deforming conditions and mechanical properties on the stretch forming limits of steel sheets. In: Proceeding of ICSTIS, vol 11, pp 827–831

  • Lemaitre J, Desmorat R (2005) Engineering damages mechanics, ductile, creep, fatigue and brittle failures. Springer- Verlag, Berlin

    Google Scholar 

  • McCutcheon DB, Trumper TW, Embury JD (1976) Controlled rolling of acicular ferrite steel plate. Rev Metall 73: 143–174

    CAS  Google Scholar 

  • Muehlich U, Siegmund T, Brocks W (2000) A user-material subroutine of the modified Gurson–Tvergaard–Needleman model of porous metal plasticity for rate and temperature dependent hardening. Technical Note GKSS/WMG/98/1, GKSS, 2000

  • Nakazima K, Kikuma T, Hasuka T (1968) Study on the formability of steel sheets. Yawata Tech Rep 284: 140–141

    Google Scholar 

  • Needleman A, Tvergaard V (1987) An analysis of ductile rupture modes at a crack tip. J Mech Phys Solids 35: 151–183. doi:10.1016/0022-5096(87)90034-2

    Article  MATH  ADS  Google Scholar 

  • Papaefthymiou S, Bleck W, Prahl U, Carmen A, Sietsma J, Van der Zwaag S (2003) Micromechanical damage simulations of TRIP steels. Mater Sci Forum 426–432:1355–1360

    Article  Google Scholar 

  • Papaefthymiou S, Prahl U, Bleck W, Van der Zwaag S, Sietsma J (2006) Experimental observations on the correlation between microstructure and fracture of multiphase steels. Int J Mater Res (formerly Z Metallkd) 97:1723–1731

    CAS  Google Scholar 

  • Pickering FB (1992) Constitution and properties of steels. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology (a comprehensive treatment), vol 7. VCH, New York

    Google Scholar 

  • Prahl U (2003) Schädigung und Versagen mikrolegierter Feinkornstähle in Experiment und Simulation. Dissertation, RWTH Aachen University

  • Prahl U, Uthaisangsuk V, Papaefthymiou S, Bleck W, Sietsma J, Vander Zwaag S (2007) Micromechanics-based modelling of properties and failure of multiphase steels. Comput Mater Sci 39: 17–22. doi:10.1016/j.commatsci.2006.01.023

    Article  CAS  Google Scholar 

  • Reisner G, Werner EA, Fischer FD (1998) Micromechanical modeling of martensitic transformation in random microstructures. Int J Solids Struct 35: 2457–2473. doi:10.1016/S0020-7683(97)00149-2

    Article  MATH  Google Scholar 

  • Rodriguez RM, Gutierrez I (2003) Unified formulation to predict the tensile curves of steels with different microstructures. Mater Sci Forum 426–432: 4525–4530

    Article  Google Scholar 

  • Rodriguez RM, Gutierrez I (2004) Mechanical behaviour of steels with mixed microstructures. In: Lamberigts M (ed) Proceeding of the 2nd international conference on thermomechanical processing of steels (TMP 2004), Liege, 2004

  • Ruggieri C, Panontin TL, Dodds RH (1996) Numerical modeling of ductile crack growth in 3-D using computational cell elements. Int J Fract 82: 67–95. doi:10.1007/BF00017864

    Article  CAS  Google Scholar 

  • Shan ZH, Gokhale AM (2001) Micromechanics of complex three-dimensional microstructures. Acta Mater 49: 2001–2015. doi:10.1016/S1359-6454(01)00093-3

    Article  CAS  Google Scholar 

  • Tasan CC, Hoefnagels JMP, Peelings RHJ, Geers MGD, Ten Horn CHLJ, Vegter H (2007) Ductile damage evolution and strain path dependency. In: Cueto E, Chinesta F (eds) AIP conference proceedings, Zaragoza, Spain, 2007, pp 187–192

  • Thomser C, Prahl U, Vegter H, Bleck W (2007) Modelling the mechanical properties of multiphase steels. In: Szeliga D (ed) Proceeding of the 14th conference computer methods in material science, Zakopane, 2007

  • Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17: 389–407. doi:10.1007/BF00036191

    Article  Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Mater 32: 157–169. doi:10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  • Uthaisangsuk V, Muenstermann S, Prahl U, Bleck W (2008) Experimental and numerical failure criterion for formability prediction in sheet metal forming. Comput Mater Sci 43: 43–50. doi:10.1016/j.commatsci.2007.07.036

    Article  CAS  Google Scholar 

  • Zhang Y, Chen ZT (2007) On the effect of stress triaxiality on void coalescence. Int J Fract 143: 105–112. doi:10.1007/s10704-006-9045-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoon Uthaisangsuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthaisangsuk, V., Prahl, U. & Bleck, W. Characterisation of formability behaviour of multiphase steels by micromechanical modelling. Int J Fract 157, 55–69 (2009). https://doi.org/10.1007/s10704-009-9329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9329-4

Keywords

Navigation