Skip to main content
Log in

Anomalous roughness of fracture surfaces in 2D fuse models

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We study anomalous scaling and multiscaling of two-dimensional crack profiles in the random fuse model using both periodic and open boundary conditions. Our large scale and extensively sampled numerical results reveal the importance of crack branching and coalescence of microcracks, which induce jumps in the solid-on-solid crack profiles. Removal of overhangs (jumps) in the crack profiles eliminates the multiscaling observed in earlier studies and reduces anomalous scaling. We find that the probability density distribution \({p(\Delta h(\ell))}\) of the height differences \({\Delta h(\ell) = [h(x+\ell) - h(x)]}\) of the crack profile obtained after removing the jumps in the profiles has the scaling form \({p(\Delta h(\ell)) = \langle\Delta h^2(\ell)\rangle^{-1/2} ~f\left(\frac{\Delta h(\ell)}{\langle\Delta h^2(\ell)\rangle^{1/2}}\right)}\) , and follows a Gaussian distribution even for small bin sizes ℓ. The anomalous scaling can be summarized with the scaling relation \({\left[\frac{\langle\Delta h^2(\ell)\rangle^{1/2}}{\langle\Delta h^2(L/2)\rangle^{1/2}}\right]^{1/\zeta_{loc}} + \frac{(\ell-L/2)^2}{(L/2)^2} = 1}\) , where \({\langle\Delta h^2(L/2)\rangle^{1/2}\sim L^{\zeta}}\) and L is the system size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alava MJ, Nukala PKVV, Zapperi S (2006a) Statistical models of fracture. Adv Phys 55: 349–476

    Article  ADS  Google Scholar 

  • Alava MJ, Nukala PKVV, Zapperi S (2006b) Morphology of two-dimensional fracture surfaces. J Stat Mech: Theor Exp L10002

  • Bakke JOH, Bjelland J, Ramstad T, Stranden T, Hansen A, Schmittbuhl J (2003) Roughness of brittle fractures as a correlated percolation problem. Phys Scripta T 106: 65–69

    Article  ADS  Google Scholar 

  • Bakke JOH, Ramstad T, Hansen A (2007) Roughness exponent measurements for the central force model. Phys Rev B 76: 054110

    Article  ADS  Google Scholar 

  • Baldassarri A, Colaiori F, Castellano C (2003) Average shape of a fluctuation: Universality of excursions of stochastic processes. Phys Rev Lett 90:060601 (4 pp)

    Google Scholar 

  • Boffa JM, Allain C, Hulin JP (1998) Experimental analysis of fracture rugosity in granular and compact rocks. Eur Phys J Appl Phys 2: 281–289

    Article  ADS  Google Scholar 

  • Bonamy D, Ponson L, Prades S, Bouchaud E, Guillot C (2006) Scaling exponents of fracture surfaces in homogeneous glass and glassy ceramics. Phys Rev Lett 97: 135504 (4 pp)

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bouchaud E (1997) Scaling properties of cracks. J Phys Condens Matter 9: 4319–4344

    Article  ADS  CAS  Google Scholar 

  • Bouchaud E (2003) The morphology of fracture surfaces, a tool to understand crack propagation in complex materials. Surf Sci Rev Lett 10: 797–814

    Article  ADS  CAS  Google Scholar 

  • Bouchaud E, Lapasset G, Planés J, Navéos S (1993) Statistics of branched fracture surfaces. Phys Rev B 48: 2917–2928

    Article  ADS  CAS  Google Scholar 

  • Bouchbinder E, Procaccia I, Santucci S, Vanel L (2006) Fracture surfaces as multiscaling graphs. Phys Rev Lett 96: 055509 (4 pp)

    Article  PubMed  ADS  Google Scholar 

  • Bouchbinder E, Procaccia I, Sela S (2006) Statistical physics of fracture surfaces morphology. J Stat Phys 125: 1029–1068

    Article  ADS  MathSciNet  Google Scholar 

  • Daguier P, Nghiem B, Bouchaud E, Creuzet F (1997) Pinning and depinning of crack fronts in heterogeneous materials. Phys Rev Lett 78: 1062–1065

    Article  ADS  CAS  Google Scholar 

  • de Arcangelis L, Redner S, Herrmann HJ (1985) A random fuse model for breaking processes. J Phys (Paris) Lett 46: 585–590

    Google Scholar 

  • Engoy T, Maloy KJ, Hansen A, Roux S (1994) Roughness of two-dimensional cracks in wood. Phys Rev Lett 73: 834–837

    Article  PubMed  ADS  Google Scholar 

  • Hansen A, Hinrichsen EL, Roux S (1991) Roughness of crack interfaces. Phys Rev Lett 66: 2476–2479

    Article  PubMed  ADS  Google Scholar 

  • Herrmann HJ, Roux S (1990) Statistical models for the fracture of disordered media. North-Holland, Amsterdam

    Google Scholar 

  • Kertész J, Horvath VK, Weber F (1993) Self-affine rupture lines in paper sheets. Fractals 1: 67

    Article  Google Scholar 

  • López JM, Schmittbuhl J (1998) Anomalous scaling of fracture surfaces. Phys Rev E 57: 6405–6408

    Article  Google Scholar 

  • López JM, Rodríguez MA, Cuerno R (1997) Superroughening versus intrinsic anomalous scaling of surfaces. Phys Rev E 56: 3993–3998

    Article  ADS  Google Scholar 

  • Mallick N, Cortet PP, Santucci S, Roux SG, Vanel L (2007) Discrepancy between subcritical and fast rupture roughness: a cumulant analysis. Phys Rev Lett 98: 255502 (4 pp)

    Article  PubMed  ADS  CAS  Google Scholar 

  • Maloy KJ, Hansen A, Hinrichsen EL, Roux S (1992) Experimental measurements of the roughness of brittle cracks. Phys Rev Lett 68: 213–215

    Article  PubMed  ADS  Google Scholar 

  • Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature (London) 308: 721–722

    Article  ADS  CAS  Google Scholar 

  • Mecholsky JJ, Passoja DE, Feinberg-Ringel KS (1989) Quantitative analysis of brittle fracture surfaces using fractal geometry. J Am Ceram Soc 72: 60–65

    Article  CAS  Google Scholar 

  • Menezes-Sobrinho IL, Couto MS, Ribeiro IRB (2005) Anisotropy in rupture lines of paper sheets. Phys Rev E 71: 066121 (6 pp)

    Article  ADS  CAS  Google Scholar 

  • Mitchell SJ (2005) Discontinuities in self-affine functions lead to multiaffinity. Phys Rev E 72: 065103 (4 pp)

    Article  ADS  CAS  Google Scholar 

  • Morel S, Schmittbuhl J, López JM, Valentin G (1998) Anomalous roughening of wood fractured surfaces. Phys Rev E 58: 6999–7005

    Article  CAS  Google Scholar 

  • Nukala PKVV, Simunovic S (2003) An efficient algorithm for simulating fracture using large fuse networks. J Phys A: Math Gen 36: 11403–11412

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Nukala PKVV, Zapperi S, Simunovic S (2006) Crack surface roughness in three-dimensional random fuse networks. Phys Rev E 74: 026105 (8 pp)

    Article  ADS  Google Scholar 

  • Nukala PKVV, Zapperi S, Alava MJ, Simunovic S (2008) preprint

  • Ponson L, Bonamy D, Auradou H, Mourot G, Morel S, Bouchaud E, Guillot C, Hulin JP (2006a) Anisotropic self-affine properties of experimental fracture surfaces. Int J Fract 140: 27–37

    Article  MATH  CAS  Google Scholar 

  • Ponson L, Bonamy D, Bouchaud E (2006b) Two-dimensional scaling properties of experimental fracture surfaces. Phys Rev Lett 96: 035506 (4 pp)

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ponson L, Auradou H, Pessel M, Lazarus V, Hulin JP (2007) Failure mechanisms and surface roughness statistics of fractured Fontainebleau sandstone. Phys Rev E 76: 036108 (7 pp)

    Article  ADS  CAS  Google Scholar 

  • Rosti J, Salminen LI, Seppälä ET, Alava MJ, Niskanen KJ (2001) Printing of cracks in two-dimensional disordered media. Eur Phys J B 19: 259–263

    Article  ADS  CAS  Google Scholar 

  • Salminen LI, Alava MJ, Niskanen KJ (2003) Analysis of long crack lines in paper webs. Eur Phys J B 32: 369–374

    Article  ADS  CAS  Google Scholar 

  • Santucci S, Maloy KJ, Delaplace A, Mathiesen J, Hansen A, Bakke JOH, Schmittbuhl J, Vanel L, Ray P (2007) Statistics of fracture surfaces. Phys Rev E 75: 016104

    Article  ADS  Google Scholar 

  • Schmittbuhl J, Roux S, Berthaud Y (1994) Development of roughness in crack propagation. Europhys Lett 28: 585–590

    Article  ADS  CAS  Google Scholar 

  • Schmittbuhl J, Schmitt F, Scholz C (1995a) Scaling invariance of crack surfaces. J Geophys Res 100: 5953–5973

    Article  ADS  Google Scholar 

  • Schmittbuhl J, Vilotte JP, Roux S (1995b) Reliability of self-affine measurements. Phys Rev E 51: 131–147

    Article  ADS  CAS  Google Scholar 

  • Seppälä ET, Räisänen VI, Alava MJ (2000) Scaling of interfaces in brittle fracture and perfect plasticity. Phys Rev E 61: 6312–6319

    Article  ADS  Google Scholar 

  • Zapperi S, Nukala PKVV, Simunovic S (2005) Crack roughness and avalanche precursors in random fuse model. Phys Rev E 71: 026106 (10 pp)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phani K. V. V. Nukala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nukala, P.K.V.V., Zapperi, S., Alava, M.J. et al. Anomalous roughness of fracture surfaces in 2D fuse models. Int J Fract 154, 119–130 (2008). https://doi.org/10.1007/s10704-008-9298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9298-z

Keywords

Navigation