Skip to main content
Log in

Estimating durability of steels at repeated bending impacts

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Many components are subjected to repeated impacts, or in some cases these impacts can appear as additional loads. Repeated impacts define a fatigue phenomenon known under the name of Impact Fatigue. Because the strain rate changes the material characteristics it is to expect that the material properties at impact fatigue to be different in regard to those obtained at non-impact fatigue. This paper presents a classification of repeated impact tests, and starting from this a series of parameters used for durability estimation will be analyzed. The high number of parameters used by different authors creates difficulties in comparison the different laboratories results. The importance of the shape and dimensions of specimens, and the stiffness of supports are highlighted. In order to avoid these influences the authors proposed an experimental technique, based on testing of Charpy specimens, in similar conditions as single impact test. A new parameter η is proposed in order to correlate the durability at repeated impacts with the Charpy V Notch (CVN) impact energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akizono K (1964) Experimental study on the stress of beams caused by impact loads. Trans Jpn Soc Mech Eng 30(215): 800–805

    Google Scholar 

  • Akizono K, Murakami R (1978) Influence of grain size on impact fatigue behavior in low carbon steel. Scientific Papers of Faculty of Engineering Tokushima University. vol 23, pp 129–137

  • Azouaoui K, Rechak S, Azari Z, Benmedakhene S, Laksimi A, Pluvinage G (2001) Modelling of damage and failure of glass/epoxy composite plates subject to impact fatigue. Int J Fatigue 23: 877–885. doi:10.1016/S0142-1123(01)00050-0

    Article  CAS  Google Scholar 

  • Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007a) Damage evolution in adhesive joints subjected to impact fatigue. J Sound Vib 308: 467–478. doi:10.1016/j.jsv.2007.03.088

    Article  ADS  Google Scholar 

  • Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007b) Propagation of delamination zones in bonded joints. Proc Estonian Acad Sci Phys Math 56(2): 170–176

    MATH  Google Scholar 

  • Chatani A (1973) On the strength in brittle fracture region under repeated impact tensile load. J Soc Mater Sci 737(1): 33–36

    Google Scholar 

  • Dumitru I (1998) Oboseala la soc a materialelor. Mirton, Timisoara

    Google Scholar 

  • Dumitru I, Babeu T, Babeu S, Marsavina L (1999) Effect of prestressing on durability at repeated impacts. In: Babitsky VI (eds) Dynamics of vibro-impact systems. Springer, Berlin, pp 261–268

    Google Scholar 

  • Dumitru I, Faur N, Cipleu A (2006) Impact fatigue—research for further development. In: Proceedings of 5th international congress of Croatian Society of mechanics, Trogir, pp 131–137

  • Dumitru I, Marsavina L, Faur N (2007a) Experimental study of torsional impact fatigue of shafts. J Sound Vib 308: 479–488. doi:10.1016/j.jsv.2007.04.011

    Article  ADS  Google Scholar 

  • Dumitru I, Marsavina L, Faur N, Hajdu I (2007b) Models for estimating the durability at repeated impacts. Key Eng Mater 348–349: 205–208

    Article  Google Scholar 

  • Freund BL (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Habara H (1993) Fundamental study on impact fatigue. Osaka Prefectural Research Inst., Dep. of Mech. Eng, Osaka

    Google Scholar 

  • Habara H, Nishiyama U (1973) Studies on impact fatigue Part I. Trans Jpn Soc Mech Eng 318(39): 487–497

    Google Scholar 

  • Habara H, Nishiyama U, Katayoma T (1974) Studies on impact fatigue, Part II. Trans Jpn Soc Mech Eng 337(40): 2474–2483

    Google Scholar 

  • Iguchi H, Tanaka K, Taira S (1979) Failure mechanisms in impact fatigue of materials. Fatigue Eng Mater Struct 2: 165–176. doi:10.1111/j.1460-2695.1979.tb01352.x

    Article  Google Scholar 

  • Johnson AA (2003) Impact-fatigue an emerging field of study. In: Proceedings of the international conference on fatigue 2003, Engineering Integrity Society, Cambridge, pp 257–266

  • Johnson AA, Storey RJ (2007) The impact fatigue properties of iron and steel. J Sound Vib 308: 458–466. doi:10.1016/j.jsv.2007.06.044

    Article  ADS  Google Scholar 

  • Kawaguchi T, Nishimura H, Ito K, Sorimachi H, Kuriyama T, Narisawa I (2004) Impact fatigue properties of glass fiber-reinforced thermoplastics. Compos Sci Technol 64: 1057–1067. doi:10.1016/j.compscitech.2003.08.007

    Article  CAS  Google Scholar 

  • Kawamoto M, Shibata T, Tatsuo K, Niwa T (1968) Effect of statistical strength on durability of steels on tensile impact fatigue strength. Bull JSME 11(47): 798–804

    CAS  Google Scholar 

  • Kobayashi T (2000) Strength and fracture of aluminum alloys. Mater Sci Eng A 286: 333–341. doi:10.1016/S0921-5093(00)00935-7

    Article  Google Scholar 

  • Maekawa I (2005) The influence of stress wave on the impact fracture strength of cracked member. Int J Impact Eng 32: 351–357. doi:10.1016/j.ijimpeng.2004.11.004

    Article  Google Scholar 

  • Maekawa I, Tanabe Y, Nou Y (1982) Size effect on impact torsional fatigue. In: Proceedings of the 25th Japan congress on materials research, Kyoto, pp 124–127

  • Murakami R, Akizono K (1982) The influence of cyclic impact loading and stress ratio on fatigue crack growth rate in aluminum alloy. In: Sih GC (ed) Fracture mechanics applied to materials evaluation and structures design. Melbourne, pp 505–516

  • Nakayama H, Tanaka T (1979) Review on the impact fatigue strength of metallic materials. Bull Inst Res OIU 2: 93–107

    Google Scholar 

  • Nakayama H, Tanaka T (1984) Impact fatigue crack growth behaviors of high strength low alloy steel. Int J Fatigue 26: R19–R24

    Google Scholar 

  • Nishiyama U, Habara H, Katayama T (1977) Fundamental study on impact fatigue. Trans Jpn Soc Mech Eng 43(374): 3613–3620

    Google Scholar 

  • Ray D, Sarkar BK, Bose NR (2002) Impact fatigue of vinylester resin mtrix composites reinforced with alkali treated jute fibres. Compos Part A 33: 233–241. doi:10.1016/S1359-835X(01)00096-3

    Article  Google Scholar 

  • Roy R, Sarkar BK, Bose NR (2001a) Behaviour of E-glass fibre reinforced vinylester resin composites under impact fatigue. Bull Mater Sci 24(2): 137–142. doi:10.1007/BF02710090

    Article  CAS  Google Scholar 

  • Roy R, Sarkar BK, Bose NR (2001b) Impact fatigue of glass fibre-vinylester resin composites. Compos Part A 32: 871–876. doi:10.1016/S1359-835X(00)00151-2

    Article  Google Scholar 

  • Sahoo SK, Silberschmidt VV (2007) Effect of multi-impacts on a PMMA sheet material. J Mater Process Technol (in press). doi:10.1016/j.jmatprotec.2007.11.035

  • Sarkar BK, Ray D (2004) Effect of the defect concentration on the impact fatigue endurance of untreated and alkali treated jute–vinylester composites under normal and liquid nitrogen atmosphere. Compos Sci Technol 64: 2213–2219. doi:10.1016/j.compscitech.2004.03.017

    Article  CAS  Google Scholar 

  • Sebbani MJE, Allaire C (2001) Mechanical impact fatigue of refractories. Br Ceram Trans 100(5): 193–196. doi:10.1179/096797801681440

    Article  CAS  Google Scholar 

  • Sinmazcelik T, Arici AA, Gunay V (2006) Impact-fatigue behavior of unidirectional carbon fibre reinforced polyetherimide (PEI) composites. J Mater Sci 41: 6237–6244. doi:10.1007/s10853-006-0720-5

    Article  ADS  CAS  Google Scholar 

  • Schrauwen B, Peijs T (2002) Influence of matrix ductility and fibre architecture on the repeated impact response of glass-fiber-reinforced laminated composites. Appl Compos Mater 9: 331–352. doi:10.1023/A:1020267013414

    Article  CAS  Google Scholar 

  • Tanaka T, Nakayama H (1973) Studies on impact fatigue, Part I. Bull JSME 16(102): 1814–1828

    Google Scholar 

  • Tanaka T, Nakayama H (1974a) Studies on impact fatigue, Part II. Bull JSME 17(113): 1379–1388

    CAS  Google Scholar 

  • Tanaka T, Nakayama H (1974b) Low cycle impact fatigue on pure aluminum. In: Proceedings of the 17th Japan Congress on materials Research, Kyoto, pp 61–66

  • Tanaka T, Nakayama H (1976) Studies on impact fatigue, Part IV. Bull JSME 19(138): 1391–1400

    CAS  Google Scholar 

  • Tanaka T, Nakayama H, Kimura H (1985) On the impact fatigue crack growth behavior of metallic materials. Fatigue Fract Eng Mater Struct 8(1): 13–22. doi:10.1111/j.1460-2695.1985.tb00416.x

    Article  Google Scholar 

  • Zhang M, Yang P, Tan Y (1999) Micromechanisms of fatigue crack nucleation and short crack growth in a low carbon steel under low cycle impact fatigue loading. Int J Fatigue 21: 823–830. doi:10.1016/S0142-1123(99)00031-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Marsavina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitru, I., Marsavina, L. & Faur, N. Estimating durability of steels at repeated bending impacts. Int J Fract 157, 89–100 (2009). https://doi.org/10.1007/s10704-008-9295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9295-2

Keywords

Navigation