Skip to main content
Log in

Analogies between progressive collapse of structures and fracture of materials

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The analogy between structural progressive collapse and Fracture Mechanics is consistent either for phenomenological, technological and theoretical aspects. In this paper a general energy criterion suitable for fracture in heterogeneous materials is applied to study the progressive collapse of simple structures with cohesive post peak behavior: elementary frames and fiber bundles. The analyses put into evidence some interesting scale effects induced by ductility and dynamics. In particular, a power law describing the decrease of the reduced dynamic critical load with the structural scale and a second order ductile-brittle transition, have been found. These results can be usefully applied in robustness oriented structural design. Moreover, the study of the influence of the extent of the starting damage in structures with different sizes suggests that, the elementary cells of complex framed structures can play a role similar to the microstructure of materials. In conclusion, a new approach to the problem of collapse into complex structures by means of the tools of Fracture Mechanics is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bažant ZP (1984) Size effects in blunt fracture: concrete, rock, metal. J Eng Mech 110(4): 518–535

    Article  Google Scholar 

  • Bažant ZP (2004) Probability distribution of energetic-statistical size effect in quasibrittle fracture. Probab Eng Mech 19:307–319. doi:10.1016/j.probengmech.2003.09.003

    Google Scholar 

  • Bažant ZP, Cedolin L (1991) Stability of structures: elastic, inelastic, fracture and damage theories. Oxford University Press, New York

    MATH  Google Scholar 

  • Bažant ZP, Pang S-D (2007) Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. J Mech Phys Solids 55:91–134. doi:10.1016/j.jmps.2006.05.007

    Google Scholar 

  • Bažant ZP, Verdure M (2007) Mechanics of progressive collapse: learning from World Trade Center and building demolitions. J Eng Mech 133(3):308–319. doi:10.1061/(ASCE)0733-9399(2007)133:3(308)

    Google Scholar 

  • Bažant ZP, Xi Y, Reid SG (1992) Statistical size effect in quasi-brittle structures: I. Is Weibull theory applicable? J Eng Mech 117(11):2609–2622. doi:10.1061/(ASCE)0733-9399(1991)117:11(2609)

    Google Scholar 

  • Carpinteri A (1989) Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics. Int J Solids Struct 25(4): 407–429. doi:10.1016/0020-7683(89)90056-5

    Article  Google Scholar 

  • Carpinteri A (1997) Structural mechanics: a unified approach. Chapman & Hall, London

    MATH  Google Scholar 

  • Carpinteri A, Chiaia BM (1995) Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy. Mater Struct 28(182):435–443. doi:10.1007/BF02473162

    Google Scholar 

  • Carpinteri A, Chiaia BM, Ferro G (1995) Size effects on nominal strength of concrete structures: multifractality of material ligaments and dimensional transitino from order to disorder. Mater Struct 28(180): 311–317. doi:10.1007/BF02473145

    Article  CAS  Google Scholar 

  • Carpinteri A, Corrado M, Paggi M et al (2007) Cohesive versus overlapping crack model for a size effect analysis of RC elements in bending. In: Carpinteri A, Gambarova P, Ferro G, Plizzari G (eds) Fracture mechanics of concrete structures (Proceedings of the 6th International FraMCoS Conference, Catania, Italy 2007). Taylor & Francis, London, Vol II, pp 655–663

  • Chiaia BM, Masoero E (2007) Structural robustness: the role of geometry and complexity and the brittle fracture analogy. Paper presented at the 18th congress of the Italian Association of Theoretical and Applied Mechanics AIMETA, University of Brescia, 11–14 September 2007

  • Chiaia BM, Vervuurt A, Van Mier JGM (1997) Lattice model evaluation of progressive failure in disordered particle composites. Eng Fract Mech 57(2/3): 301–318. doi:10.1016/S0013-7944(97)00011-8

    Article  Google Scholar 

  • Fantilli AP, Iori I, Vallini P (2007) Size effects of compressed concrete in four point bending RC beams. Eng Fract Mech 74:97–108. doi:10.1016/j.engfracmech.2006.01.013

    Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, UK

    Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos T R Soc A 221:163–198. doi:10.1098/rsta.1921.0006

  • Harlow DG, Phoenix SL (1978) The chain-of-bundles probability model for the strength of fibrous materials I: Analysis and Conjectures. J Compos Mater 12(2):195–214. doi:10.1177/002199837801200207

  • Herrmann, HJ, Roux, S (eds) (1990) Statistical models for the fracture of disordered media. North-Holland, Amsterdam

    Google Scholar 

  • Herrmann HJ, Hansen A, Roux S (1989) Fracture of disordered, elastic lattices in two dimensions. Phys Rev B 39:637–648. doi:10.1103/PhysRevB.39.637

    Google Scholar 

  • Hillerborg A, Modéer N et al (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr Res 6: 773–782. doi:10.1016/0008-8846(76)90007-7

  • Kim DY, Herrmann HJ, Landau DP (1987) Percolation on a random lattice. Phys Rev B 35:3661–3662. doi:10.1103/PhysRevB.35.3661

    Google Scholar 

  • Levy M, Salvadori M (1994) Why buildings fall down: why structures fail. W.W. Norton & Company, New York, USA

    Google Scholar 

  • Maes MA, Fritzsons K, et al (2006) Structural robustness in the light of risk and consequences analysis. Struct Eng Int 2:101–107. doi:10.2749/101686606777962468

    Google Scholar 

  • Matuttis HG, Luding S, Herrmann HJ (2000) Discrete Elements simulations of dense packing and heaps made of spherical and non-spherical particles. Powder Technol 109:278–292. doi:10.1016/S0032-5910(99)00243-0

  • Pretlove AJ, Ramsden M, Atkins AG (1991) Dynamic effects in progressive failure of structures. Int J Impact Eng 11(4): 539–546. doi:10.1016/0734-743X(91)90019-C

    Article  Google Scholar 

  • RILEM TC QFS (chaired by Bažant ZP) (2004) Quasibrittle fracture scaling and size effect—final report. Mater Struct 37(272), 547–586

    Google Scholar 

  • Schlangen E, Van Mier JGM (1993) Lattice model for simulating fracture of concrete. In: Wittmann FH(eds) Numerical models in fracture mechanics of concrete. Balkema, Rotterdam, pp 195–205

    Google Scholar 

  • Sih GC, Hartranft RJ (1980) The concept of fracture mechanics applied to the progressive failure of structural members. Comput Struc 12: 813–818. doi:10.1016/0045-7949(80)90018-8

    Article  MATH  Google Scholar 

  • Smith JW (2006) Structural robustness analysis and the fast fracture analogy. Struct Eng Int 2:118–123. doi:10.2749/101686606777962521

    Google Scholar 

  • Sorensen JD, Christensen HH (2006) Danish requirements for robustness of structures: background and implementation. Struct Eng Int 2:172–177. doi:10.2749/101686606777962576

    Google Scholar 

  • Val DV, Val EG (2006) Robustness of frame structures. Struct Eng Int 2: 108–112. doi:10.2749/101686606777962413

    Article  Google Scholar 

  • Van Mier JGM, Chiaia BM, Vervuurt A (1997) Numerical simulation of chaotic and self-organized damage in brittle disordered materials. Comput Methods Appl M 142:189–201. doi:10.1016/S0045-7825(96)01128-0

  • Vermeer PA, Diebels S, Ehlers W, Herrmann HJ, Luding S, Ramm E (2001) Continuous and discontinuous modeling of cohesive-frictional materials. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Masoero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiaia, B.M., Masoero, E. Analogies between progressive collapse of structures and fracture of materials. Int J Fract 154, 177–193 (2008). https://doi.org/10.1007/s10704-008-9287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9287-2

Keywords

Navigation