Skip to main content
Log in

Self-consistent scheme for toughness homogenization

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Considering a semi-infinite planar crack propagating along a plane where the local toughness is a random field, the addressed problem is to compute the effective (or homogeneous and macroscopic) toughness. After a brief introduction to the two regimes—strong and weak pinning—that are expected depending on the system size, a self-consistent homogenization scheme is introduced. It is shown that this scheme allows one to predict not only the mean value but also the standard deviation and even the complete probability distribution function of the toughness. A discussion about the quality of this prediction as compared with direct numerical simulations is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonamy D, Ponson L, Prades S, Bouchaud E, Guillot C (2006) Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. Phys Rev Lett 97(13): 135504

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bornert M, Bretheau T, Gilormini P (eds) (2008) Homogenization in mechanics of materials. Lavoisier, Paris (France)

    Google Scholar 

  • Bouchaud JP, Bouchaud E, Lapasset G, Planes J (1993) Models of fractal cracks. Phys Rev Lett 71(14): 2240–2243

    Article  PubMed  ADS  Google Scholar 

  • Charles Y, Vandembroucq D, Hild F, Roux S (2004) Material-independent crack arrest statistics. J Mech Phys Sol 52(7): 1651–1669

    Article  MATH  ADS  CAS  Google Scholar 

  • Charles Y, Vandembroucq D, Hild F, Roux S (2006) Materials-independent crack arrest statistics: application to indentation experiments. Int J Fract 142(1–2): 51–67

    CAS  Google Scholar 

  • Delaplace A, Schmittbuhl J, Måløy KJ (1999) High resolution description of a crack front in a heterogeneous Plexiglas block. Phys Rev E 60(2): 1337–1343

    Article  ADS  CAS  Google Scholar 

  • Ertas D, Kardar M (1994) Anisotropic scaling in depinning of a flux line. Phys Rev Lett 73(12): 1703–1706

    Article  PubMed  ADS  CAS  Google Scholar 

  • Fisher DS (1985) Sliding charge-density waves as a dynamic critical phenomenon. Phys Rev B 31(3): 1396–1427

    Article  ADS  Google Scholar 

  • Gao H, Rice JR (1989) First-order perturbation analysis of crack trapping by arrays of obstacles. ASME J Appl Mech 56: 828–836

    Article  MATH  Google Scholar 

  • Hansen A, Hinrichsen EL, Roux S (1991) Scale-invariant disorder in fracture and related breakdown phenomena. Phys Rev B 43: 665–678

    Article  ADS  Google Scholar 

  • Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13: 213–222

    Article  ADS  Google Scholar 

  • Kardar M, Parisi G, Zhang YC (1986) Dynamic scaling of growing interfaces. Phys Rev Lett 56(9): 889–892

    Article  MATH  PubMed  ADS  CAS  Google Scholar 

  • Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, Cambridge (UK)

    Google Scholar 

  • Morrissey JW, Rice JR (2000) Perturbative simulations of crack front waves. J Mech Phys Solids 48(6–7): 1229–1251

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Perrin G, Rice JR (1994) Disordering of a dynamic planar crack front in a model elastic medium of randomly variable toughness. J Mech Phys Sol 42(6): 1047–1064

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Ramanathan S, Fisher DS (1998) Onset of propagation of planar cracks in heterogeneous media. Phys Rev B 58(10): 6026–6046

    Article  CAS  ADS  Google Scholar 

  • Roux S, Vandembroucq D, Hild F (2003) Effective toughness of heterogeneous brittle materials. Eur J Mech A/Solids 22: 743–749

    Article  MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E, Zaoui, A (eds) (1987) Homogenization techniques for composite media, Lecture Notes in Physics, vol 272. Springer, Berlin (Germany)

    Google Scholar 

  • Schmittbuhl J, Måløy KJ (1997) Direct observation of a self-affine crack propagation. Phys Rev Lett 78(20): 3888–3891

    Article  ADS  CAS  Google Scholar 

  • Schmittbuhl J, Roux S, Vilotte JP, Måløy KJ (1995) Interfacial crack pinning: effect of nonlocal interactions. Phys Rev Lett 74(10): 1787–1790

    Article  PubMed  ADS  CAS  Google Scholar 

  • Tanguy A, Gounelle M, Roux S (1998) From individual to collective pinning: effect of long-range elastic interactions. Phys Rev E 58(2): 1577–1590

    Article  CAS  ADS  Google Scholar 

  • Vandembroucq D, Skoe R, Roux S (2004) Universal depinning force fluctuations of an elastic line: application to finite temperature behavior. Phys Rev E 70(5): 051101

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, S., Hild, F. Self-consistent scheme for toughness homogenization. Int J Fract 154, 159–166 (2008). https://doi.org/10.1007/s10704-008-9271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9271-x

Keywords

Navigation