Advertisement

International Journal of Fracture

, Volume 148, Issue 1, pp 79–84 | Cite as

Effect of Biaxial Load on Crack Deflection/Penetration at Bi-material Ceramic Interface

  • Liviu Marsavina
  • Tomasz Sadowski
Letters in fracture and micromechanics

Abstract

The paper investigates the effect of the biaxial loading on crack deflection/penetration at a bi-material ceramic interface. A biaxially loaded geometry was numerically investigated using Finite Element Analysis in order to determine the energy release rate. The obtained results could be used in conjunction with a fracture criteria at interface for estimating the path of the crack after the interface was reached.

Keywords

crack deflection penetration bi-material interface energy release rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks-Sills L., Ashkenazi D. (2000). A note on fracture criteria for interface fracture. International Journal of Fracture 103, 177-188CrossRefGoogle Scholar
  2. Banks-Sills L., Travitsky N., Ashkenazi D. (2000). Interface fracture properties of a bimaterial ceramic composite. Mechanics of Materials 32, 711-722CrossRefGoogle Scholar
  3. Bold P.E., Brown M.W., Allen R.J. (1991) Shear mode crack growth and rolling contact fatigue. Wear 144, 307 – 317CrossRefGoogle Scholar
  4. Erdogan F., Sih G.C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering 85, 519 – 527Google Scholar
  5. He M.Y., Hsueh C.H., Becher P.F. (2000). Deflection versus penetration of a wedge-load crack: effects of branch-crack length and penetrated-layer width. Composites: Part B 31, 299-308CrossRefGoogle Scholar
  6. He M.Y., Hutchinson J.W. (1993). Crack deflection at an interface between dissimilar elastic materials. International Journal of Solids and Structures 25, 1053 – 1067Google Scholar
  7. Iesulauro, E. (2002). FRANC2D/L a Crack Propagation simulator for plane layered materials, Cornell University, Ithaca.Google Scholar
  8. Kaddouri K., Belhouari M., Bachir Bouiadjra B., Serier B. (2006). Finite element analysis of crack perpendicular to bi-material interface: Case of couple ceramic-metal. Computational Material Science 35, 53 – 60CrossRefGoogle Scholar
  9. Madani K., Belhouari M., Bachir Bouiadjra B., Serier B., Benguediab M. (2007). Crack deflection at an interface of alumina/metal joint: A numerical analysis. Computational Material Science 38, 625 – 630CrossRefGoogle Scholar
  10. Marsavina L., Sadowski T. (2007). Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface. International Journal of Fracture 145, 237-243CrossRefGoogle Scholar
  11. Sadowski T., Hardy S. J., Postek E. (2006) A New Model for the Time-Dependent Behaviour of Polycrystalline Ceramic Materials with Metallic Inter-Granular Layers under Tension. Material Science Engineering A 424, 230-238CrossRefGoogle Scholar
  12. Sadowski T., Postek E., Denis C. (2007) Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Computational Material Science 39, 230-236CrossRefGoogle Scholar
  13. Wang C. H. (1997). Fracture of interface cracks under combined loading. Engineering Fracture Mechanics 56, 1, 77-86CrossRefGoogle Scholar
  14. Yang Q.-S., Qin Q.-H. (2001). Numerical simulation of cracking process in dissimilar materials. Composite Structures 53, 403-407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Civil and Sanitary EngineeringLublin University of TechnologyLublinPoland
  2. 2.Department Strength of MaterialsPolitehnica University of TimisoaraTimisoaraRomania

Personalised recommendations