Advertisement

International Journal of Fracture

, Volume 145, Issue 3, pp 237–243 | Cite as

Stress Intensity Factors for an Interface Kinked Crack in a Bi-Material Plate Loaded Normal to the Interface

  • Liviu Marsavina
  • Tomasz Sadowski
Letters in fracture and micromechanics

Abstract

Stress intensity factors for a kinked crack originating at interface of two bonded dissimilar materials subjected to normal tension are found by the finite element method.

Keywords

stress intensity factor bimaterial interface crack kinked crack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ekman M.J., Marsavina L., Nurse A.D. (2000). Complex fracture parameters for an interface crack between two hardening materials: a photoelastic study. Fatigue Fract. Engng. Mater. Struct. 23: 619-632CrossRefGoogle Scholar
  2. Hutchinson J.W., Mear J.W., Rice J.R. (1987). Crack paralleling an interface between dissimilar materials. ASME Journal of applied Mechanics 54: 828-832Google Scholar
  3. Hutchinson, J. W., Suo, Z. (1991). Mixed mode cracking in layered materials. In: Advances in Applied Mechanics, Edited by Hutchinson, J.W. and Wu, T.Y., Vol. 29, Academic Press, New York, 63-191.Google Scholar
  4. Iesulauro E. (2002). FRANC2D/L a crack propagation simulator for plane layered materials. Cornell University, IthacaGoogle Scholar
  5. Irwin G.R. (1957). Analysis of stress and strain near the end of a crack transversing a plate. ASME Journal of Applied Mechanics 24: 361-364Google Scholar
  6. Isida M., Noguchi H. (1983). Plane elastostatic problems of bonded dissimilar materials with an interface crack and arbitrary located cracks. Trans. Japan Soc. Mech. Engrs. 49: 137-146Google Scholar
  7. Kaya C., Butler E.G., Lewis M.H. (2003). Co-extrusion of Al2O3/ZrO2 bi-phase high temperature ceramics with fine scale aligned microstructures. Journal of the European Ceramic Society 23: 935–942CrossRefGoogle Scholar
  8. Murakami, Y. (1987). Stress Intensity Factors Handbook. Pergamon Press, Oxford, 480-488.Google Scholar
  9. O’ Dowd N.P., Shih C.F., Stout M.G. (1992) Test geometries for measuring interfacial fracture toughness. Int. J. Solids Structures 29: 571–589CrossRefGoogle Scholar
  10. Ramamurthy T.S., Krishnamurthy T., Badari Narayana K., Vijayakumar K., Dattaguru B. (1986). Modified crack closure integral method with quarter point elements. Mechanics Research Communications 13: 179-186CrossRefGoogle Scholar
  11. Rice, J.R., Suo, Z., Wang, J.S. (1990). Mechanics and thermodynamics of brittle interface failure in bimaterial systems. In: Metal-Ceramic Interfaces, eds. M. Ruhle, A.G. Evans, M.F. Ashby, J.P. Hirth, Pergamon Press, Oxford, 269-294.Google Scholar
  12. Rybicki E.R., Kanninen M. (1977). A finite element calculation of stress intensity factors by a modified crack closure integral. Engng. Fract. Mechs. 9: 931-938CrossRefGoogle Scholar
  13. Shih C.F., Asaro R.J. (1988). Elastic-plastic analysis of cracks on bimaterial interfaces: Part 1-Small Scale Yielding. ASME Journal of Applied Mechanics 55: 299-315CrossRefGoogle Scholar
  14. Smelser R.E. (1979). Evaluation of stress intensity factors for bi-materials bodies using numerical crack flank displacement data. Int. J. Fract. 15: 135-315Google Scholar
  15. Wawrzynek P.A., Ingraffea A.R (1991). Discrete modeling of crack propagation: theoretical aspects and implementation issues in two and three dimensions. Cornell University, IthacaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Lublin University of TechnologyFaculty of Civil and Sanitary EngineeringLublinPoland
  2. 2.Department Strength of MaterialsPOLITEHNICA University of TimisoaraTimisoaraRomania

Personalised recommendations