Skip to main content
Log in

Deformation and failure modelling of high strength adhesives for crash simulation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The deformation and failure mechanisms of toughened high strength adhesives used in the automotive industry are very complex and require advanced numerical models for crashworthiness simulation. The theoretical background of two new modelling approaches for thin adhesive layers is presented: firstly, a simplified elastic damaging node-to-element tied interface model approach for convenient and efficient modelling, and secondly a detailed modelling approach for improved accuracy using an elasto-viscoplastic solid element representation of the adhesive layer. The material model parameters required for both approaches are determined by a comprehensive set of experiments, including quasi-static and dynamic adhesive coupon testing, fracture toughness testing, and quasi-static tension/shear (and combined) testing of thin adhesive layers. A more complex adhesively joined assembly of two aluminium extrusions subjected to quasi-static (QS) and dynamic loading serves as the final validation example for both modelling approaches. Good agreement of experiments and numerical predictions was observed for both modelling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G IC , G IIC :

Critical strain energy release rate for Mode I and Mode II loading

\({\delta_{I}, \delta_{II}}\) :

Relative out-of-plane (Mode I) and in-plane (Mode II) interface element displacements

\({{\sigma_{I}, {\sigma_{II}}}}\) :

Out-of-plane (Mode I) and in-plane (Mode II) interface element stresses

E, G :

Young’s modulus, shear modulus

dA, dW :

Infinitesimal area and energy

d I , d II :

Out-of-plane (Mode I) and in-plane (Mode II) damage functions

 < x > + :

Operator returns ‘x’ if x > 0 and 0 otherwise

sup t≤ τ (x):

Supremum of x: Maximum of x within the range 0 ≤ t≤ τ

I 1, J 2 :

First invariant of the stress tensor and second invariant of the stress deviator

σ m :

Hydrostatic stress

σ e :

Equivalent von Mises stress

I :

Identity matrix

\({\sigma,\varepsilon^{e},\varepsilon ^{p}}\) :

Stress tensor, elastic and plastic strain tensor

E :

Elasticity matrix

σ x , τ xy :

Axial stress and torque shear stress

\({\sigma _T \left( {\varepsilon _T^p } \right)}\) :

Tensile strain hardening curve

Φ:

Yield function

α, β :

Shape parameters for the yield function and the flow potential

σ0 :

Shift stress value representing the centre of the yield locus

\({\tilde{\sigma}}\) :

Special effective equivalent stress

\({\dot{\varepsilon}_T^{p}}\) :

Plastic strain rate threshold

C :

Fitting parameter for the strain rate model

\({\dot{\lambda}}\) :

Plastic multiplier

DCB:

Double Cantilever Beam

DF:

Deshpande and Fleck

DYN:

Dynamic

Exp, Sim:

Experiment and Simulation

FE:

Finite Element

JC:

Johnson and Cook

QS:

Quasi-static

References

  • ABAQUSTM User Manual, http://abaqus.com

  • ASTM draft standard D30.06. (1993) Protocol for inter-laminar fracture testing, End-Notched Flexure (ENF)

  • Audi TT (2006) Automobil Industries, special issue

  • Blackman BRK, Kinloch AJ, Paraschi M, Teo WS (2003). Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin. Int J Adhesion Adhesives 23(4):293–305

    Article  Google Scholar 

  • BetamateTM 1496: Technical data sheet http://automotive.dow.com/materials/products/betamate/bmate96.htm

  • Camanho PP, Davila CG, Ambur DR (2001) Numerical Simulation of Delamination Growth in Composite Materials. NASA Langley Research Center, Hampton Virginia, NASA TP-2001-211041

  • Camanho PP, Matthews FL (1999). Delamination onset prediction in mechanically fastened joints in composite laminates. J Compos Mater 33:906–927

    Google Scholar 

  • Deshpande VS, Fleck NA (2000). Isotropic constitutive models for metallic foams. J Mech Phys Solids 48:1253–1283

    Article  MATH  Google Scholar 

  • Disse T (2004) Untersuchungen zum geschwindigkeitsabhängigen Festigkeits- und Verformungsverhalten von Klebverbindungen. Dissertation, Universität Paderborn, Shaker Verlag

  • Drucker DC, Prager W (1952) Soil mechanics and plastic analysis in limit design. Quarterly Appl Math 10(2):157–165

    MATH  MathSciNet  Google Scholar 

  • FOSTA P477 (2000–2002) Untersuchungen zum Crashverhalten geklebter und hybridgefügter Stahlblechverbindungen.

  • FOSTA project P593 (2002–2004) Methodenentwicklung zur Berechnung und Auslegung geklebter Stahlbauteile für den Fahrzeugbau.

  • FOSTA project P676 (2005–2007) Methodenentwicklung zur Berechnung von höherfesten Stahlklebverbindungen des Fahrzeugbaus unter Crashbelastung

  • Greve L, Pickett AK (2005). Delamination testing and modelling for composite crash simulation, Composite Science and Technology 66(6) : 816–826

    Google Scholar 

  • Hillerborg A, Modeer M, Petersson PE (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6:773–782

    Article  Google Scholar 

  • ISO international Standard DIS15024. Fibre-reinforced plastic composites—Determination of Mode I inter-laminar fracture toughness, GIC, for unidirectionally reinforced materials.

  • Johnson AF, Pickett AK, Rozycki P (2001). Computational methods for predicting impact damage in composite structures. Compos Sci Tech 61(15):2183–2192

    Article  Google Scholar 

  • Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strain, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48

    Article  Google Scholar 

  • Mahnken R, Schlimmer M (2005) Simulation of strength difference in elasto-plasticity for adhesive materials. Int J Numer Method Eng 63(10):1461–1477

    Article  MATH  Google Scholar 

  • Memhard D, Andrieux F, Sun D-Z, Feucht M, Frank T, Kolling S (2005) Entwicklung und Anwendung von Ersatzmodellen für die Anwendung von Klebverbindungen unter Crashbelastung. 4. LS-DYNAAnwenderforum, Bamberg 2005

  • PAM-CRASHTM PAM-SAFETM Version 2005 Manuals, Engineering System International, www.esi-group.com

  • Sato C, Ikegami K (1999) Strength of adhesively-bonded butt joints of tubes subjected to combined high-rate loads. J Adhesion 70:57–73

    Google Scholar 

  • Schlimmer M (1974) Fließverhalten plastisch kompressibler Werkstoffe. Dissertation, Technische Hochschule Aachen

  • Steinbrecher G, Buchman A, Sidess A, Sherman D. (2006) Characterization of the mode I fracture energy of adhesive joints”, International Journal of Adhesion and Adhesives 26(8): 644–650

    Google Scholar 

  • von Mises R (1928). Mechanik der plastischen Formanderung von Kristallen. ZAMM 8:161–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Greve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greve, L., Andrieux, F. Deformation and failure modelling of high strength adhesives for crash simulation. Int J Fract 143, 143–160 (2007). https://doi.org/10.1007/s10704-007-9054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-007-9054-9

Keywords

Navigation