Skip to main content

Advertisement

Log in

Dynamic fracture mechanics study of an electrically impermeable mode III crack in a transversely isotropic piezoelectric material under pure electric load

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The dynamic response of an electrically impermeable Mode III crack in a transversely isotropic piezoelectric material under pure electric load is investigated by treating the electric loading process as a transient impact load, which may be more appropriate to mimic the real service environment of piezoelectric materials. The stress intensity factor, the mechanical energy release rate, and the total energy release rate are derived and expressed as a function of time for a given applied electric load. The theoretical results indicate that a purely electric load can fracture the piezoelectric material if the stress intensity factor or the mechanical energy release rate is used as a failure criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen T (1994) Some exact relations of inclusions in piezoelectric media. Int J Eng Sci 32:553–556

    Article  MATH  Google Scholar 

  • Chen YH, Lu TJ (2003) Cracks and fracture in piezoelectrics. Adv Appl Mech 39:121–215

    MathSciNet  Google Scholar 

  • Chen ZT, Yu SW (1998) Antiplane vibration of cracked piezoelectric materials. Mech Res Commun 25:321–327

    Article  MATH  MathSciNet  Google Scholar 

  • Chen ZT, Yu SW (1997) Crack tip field of a piezoelectric material under antiplane impact. Chinese Sci Bull 42:1615–1619

    Article  Google Scholar 

  • Chen ZT, Karihaloo BL (1999) Transient response of a cracked piezoelectric ceramic under arbitrary electromechanical impact. International J Solids Struct 36:5125–5133

    Article  MATH  Google Scholar 

  • Dascalu C, Maugin GA (1994) Energy release rates and path independent integrals in electroelastic crack propagation. Int J Eng Sci 32:755–765

    Article  MATH  MathSciNet  Google Scholar 

  • Deeg WF (1980) The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University, CA

  • Erdogan F, Gupta GD (1972) On the numerical solution of singular integral equations. Quart J Appl Math 29:525–534

    MATH  MathSciNet  Google Scholar 

  • Fang DN, Zhang ZK, Soh AK, Lee KL (2004) Fracture criteria of piezoelectric ceramics with defects. Mech Mater 36:917–928

    Article  Google Scholar 

  • Fulton CC, Gao H (1997) Electrical nonlinearity in fracture of piezoelectric ceramics. Appl Mech Rev 51:S56–S63

    Article  Google Scholar 

  • Gao H, Zhang TY, Tong P (1997) Local and global energy release rate for an electrically yielded crack in piezoelectric ceramics. J Mech Phys Solids 45:491–510

    Article  ADS  Google Scholar 

  • Kharouf N, Heyliger PR (1994) Axisymmetric free vibrations of homogeneous and laminated piezoelectric cylinders. J Sound Vibration 174:539–561

    Article  MATH  ADS  Google Scholar 

  • Li S, Mataga PA (1996) Dynamic crack propagation in piezoelectric materials-Part I. Electrode solution. J Mech Phys Solids 44:1799–1830

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Miller MK, Guy WT (1966) Numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM J Numer Anal 3:624–635

    Article  MATH  MathSciNet  Google Scholar 

  • Pak YE (1990) Crack extension force in a piezoelectric material. J Appl Mech 67:647–653

    Google Scholar 

  • Pak YE (1992) Linear electroelastic fracture mechanics of piezoelectric materials. Int J Fract 54:79–100

    Google Scholar 

  • Pak YE, Goloubeva E (1996) Electroelastic properties of cracked piezoelectric materials under longitudinal shear. Mech Mater 24:287–303S

    Article  Google Scholar 

  • Park S, Sun CT (1995) Effect of electric field on fracture of piezoelectric ceramics. Int J Fract 70:203–216

    Article  Google Scholar 

  • Parton VZ (1976) Fracture mechanics of piezoelectric materials. Acta Astronautica 3:671–683

    Article  MATH  Google Scholar 

  • Parton VZ, Kudryavtsev BA (1988) Electromagnetoelasticity of solids: piezoelectrics and electrically conductive materials, OPA (Amsterdam) B.V.

  • Sosa H (1992) On the fracture mechanics of piezoelectric solids. Int J Solids Struct 22:2613–2622

    Article  Google Scholar 

  • Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Yu SW, Qin QH (1996) Damage analysis of thermopiezoelectric properties, Part I: crack tip singularities. Theoret Appl Fract Mech 25:263–277

    Article  Google Scholar 

  • Zhang TY, Zhao MH, Tong P (2002) Fracture of piezoelectric ceramics. Adv Appl Mech 38:147–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. T. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z.T. Dynamic fracture mechanics study of an electrically impermeable mode III crack in a transversely isotropic piezoelectric material under pure electric load. Int J Fract 141, 395–402 (2006). https://doi.org/10.1007/s10704-006-9003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-9003-z

Keywords

Navigation