Skip to main content

Advertisement

Log in

Fibrillar level fracture in bone beyond the yield point

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The nanoscale deformation and fracture mechanisms of parallel fibered bone are investigated using a novel combination of in-situ tensile testing to failure combined with high brilliance synchrotron X-ray scattering. The technique enables the simultaneous measurement of strain at two length scales – in the mineralized collagen fibrils (~100 nm diameter) along with the macroscopic strain (~1 mm diameter). Under constant rate tensile loading, we find that fibril strain saturates beyond the macroscopic yield point of bone at ~0.5 %, providing a correlation between the failure mechanisms at the nanoscale and the bulk structural properties. When bone stretched beyond the yield point is unloaded back to zero stress, the fibrils are contracted relative to their original state. We examine the findings in the context of a fiber – matrix shearing model at the nanometer level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.D. Almer S.R. Stock (2005) ArticleTitleInternal strains and stresses measured in cortical bone via high-energy X-ray diffraction Journal of Structural Biology 152 14–27 Occurrence Handle10.1016/j.jsb.2005.08.003

    Article  Google Scholar 

  • A. Bigi A. Ripamonti G. Cojazzi G. Pizzuto N. Roveri M.H.J. Koch (1991) ArticleTitleStructural- Analysis of Turkey Tendon Collagen Upon Removal of the Inorganic Phase International Journal of Biological Macromolecules 13 110–114 Occurrence Handle10.1016/0141-8130(91)90058-3

    Article  Google Scholar 

  • A.J. Bushby V.L. Ferguson A. Boyde (2004) ArticleTitleNanoindentation of bone: comparison of specimens tested in liquid and embedded in polymethylmethacrylate Journal of Materials Research 19 249–259 Occurrence Handle10.1557/jmr.2004.19.1.249

    Article  Google Scholar 

  • J.D. Currey (2003) ArticleTitleHow well are bones designed to resist fracture? Journal of Bone and Mineral Research 18 591–598 Occurrence Handle10.1359/jbmr.2003.18.4.591

    Article  Google Scholar 

  • J.D. Currey (2003) ArticleTitleThe many adaptations of bone Journal of Biomechanics 36 1487–1495 Occurrence Handle10.1016/S0021-9290(03)00124-6

    Article  Google Scholar 

  • J.D. Currey (1975) ArticleTitleEffects of Strain Rate, Reconstruction and Mineral Content on Some Mechanical-Properties of Bovine Bone Journal of Biomechanics 8 81–86 Occurrence Handle10.1016/0021-9290(75)90046-9

    Article  Google Scholar 

  • G. Fantner T. Hassenkam J.H. Kindt J.C. Weaver H. Birkedal L. Pechenik J.A. Cutroni G.A.G. Cidade G.D. Stucky D.E. Morse P.K. Hansma (2005) ArticleTitleSacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture Nature Materials 4 612–616 Occurrence Handle10.1038/nmat1428

    Article  Google Scholar 

  • P. Fratzl I. Burgert H.S. Gupta (2004a) ArticleTitleOn the role of interface polymers for the mechanics of natural polymeric composites Physical Chemistry Chemical Physics 6 5575–5579 Occurrence Handle10.1039/b411986j

    Article  Google Scholar 

  • P. Fratzl H.S. Gupta E.P. Paschalis P. Roschger (2004b) ArticleTitleStructure and mechanical quality of the collagen-mineral nano-composite in bone Journal of Materials Chemistry 14 2115–2123 Occurrence Handle10.1039/b402005g

    Article  Google Scholar 

  • H.J. Gao B.H. Ji I.L. Jager E. Arzt P. Fratzl (2003) ArticleTitleMaterials become insensitive to flaws at nanoscale: Lessons from nature Proceedings of the National Academy of Sciences of the United States of America 100 5597–5600 Occurrence Handle10.1073/pnas.0631609100 Occurrence Handle2003PNAS..100.5597G

    Article  ADS  Google Scholar 

  • H.S. Gupta P. Messmer P. Roschger S. Bernstorff K. Klaushofer P. Fratzl (2004) ArticleTitleSynchrotron Diffraction Study of Deformation Mechanisms in Mineralized Tendon Physical Review Letters 93 158101 Occurrence Handle10.1103/PhysRevLett.93.158101 Occurrence Handle2004PhRvL..93o8101G

    Article  ADS  Google Scholar 

  • H.S. Gupta W. Wagermaier G.A. Zickler D.R.B. Aroush S.S. Funari P. Roschger H.D. Wagner P. Fratzl (2005) ArticleTitleNanoscale deformation mechanisms in bone Nano Letters 5 2108–2111 Occurrence Handle10.1021/nl051584b

    Article  Google Scholar 

  • Hammersley, A.P. (1997). FIT2D: An Introduction and Overview, ESRF Internal Report, ESRF97HA02T.

  • A.P. Hammersley C. Riekel (1989) ArticleTitleMFIT: Multiple Spectra Fitting Program Synchrotron Radiation News 2 24–26

    Google Scholar 

  • J.D. Hartgerink E. Beniash S.I. Stupp (2001) ArticleTitleSelf-assembly and mineralization of peptide-amphiphile nanofibers Science 294 1684–1688 Occurrence Handle10.1126/science.1063187 Occurrence Handle2001Sci...294.1684H

    Article  ADS  Google Scholar 

  • S. Hengsberger A. Kulik P. Zysset (2002) ArticleTitleNanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions Bone 30 178–184 Occurrence Handle10.1016/S8756-3282(01)00624-X

    Article  Google Scholar 

  • D. Hull T.W. Clyne (1996) An introduction to composite materials Cambridge University Press Cambridge, UK

    Google Scholar 

  • X. Li W.-C. Chang Y.J. Chao R. Wang M. Chang (2004) ArticleTitleNanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone Nano Letters 4 613–617 Occurrence Handle10.1021/nl049962k

    Article  Google Scholar 

  • C.W. Mccutchen (1975) ArticleTitleDo Mineral Crystals Stiffen Bone by Straitjacketing Its Collagen Journal of Theoretical Biology 51 51–58 Occurrence Handle10.1016/0022-5193(75)90138-1

    Article  Google Scholar 

  • R. Menig M.H. Meyers M.A. Meyers K.S. Vecchio (2001) ArticleTitleQuasi-static and dynamic mechanical response of Strombus gigas (conch) shells Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 297 203–211

    Google Scholar 

  • R. Menig M.H. Meyers M.A. Meyers K.S. Vecchio (2000) ArticleTitleQuasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells Acta Materialia 48 2383–2398 Occurrence Handle10.1016/S1359-6454(99)00443-7

    Article  Google Scholar 

  • R.K. Nalla J.H. Kinney R.O. Ritchie (2003) ArticleTitleMechanistic fracture criteria for the failure of human cortical bone Nature Materials 2 164–168 Occurrence Handle10.1038/nmat832

    Article  Google Scholar 

  • A. Nanci (1999) ArticleTitleContent and distribution of noncollagenous matrix proteins in bone and cementum: Relationship to speed of formation and collagen packing density Journal of Structural Biology 126 256–269 Occurrence Handle10.1006/jsbi.1999.4137

    Article  Google Scholar 

  • J.Y. Rho L. Kuhn-Spearing P. Zioupos (1998) ArticleTitleMechanical properties and the hierarchical structure of bone Medical Engineering & Physics 20 92–102 Occurrence Handle10.1016/S1350-4533(98)00007-1

    Article  Google Scholar 

  • J.Y. Rho S.R. Mishra K. Chung J. Bai G.M. Pharr (2001) ArticleTitleRelationship between ultrastructure and the nanoindentation properties of intramuscular herring bones Annals of Biomedical Engineering 29 1082–1088 Occurrence Handle10.1114/1.1424913

    Article  Google Scholar 

  • S. Weiner H.D. Wagner (1998) ArticleTitleThe material bone: structure mechanical function relations Annuals Review Materials Science 28 271–298 Occurrence Handle10.1146/annurev.matsci.28.1.271

    Article  Google Scholar 

  • Wess, T.J. (2005). Collagen fibrillar form and function. In: Parry, D. and Squire, J. (eds.) Fibrous Proteins: Coiled-Coils, Collagen and Elastomers. Elsevier Inc. Burlington (2005) pp. 341–374.

  • P. Zioupos (2001) ArticleTitleAgeing human bone: factors affecting its biomechanical properties and the role of collagen Journal of Biomaterials Applications 15 187–229 Occurrence Handle10.1106/5JUJ-TFJ3-JVVA-3RJ0

    Article  Google Scholar 

  • P. Zioupos (1999) ArticleTitleOn microcracks, microcracking, in-vivo, in-vitro, in-situ and other issues Journal of Biomechanics 32 209–211 Occurrence Handle10.1016/S0021-9290(98)00146-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, H.S., Wagermaier, W., Zickler, G.A. et al. Fibrillar level fracture in bone beyond the yield point. Int J Fract 139, 425–436 (2006). https://doi.org/10.1007/s10704-006-6635-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-6635-y

Keywords

Navigation