Skip to main content
Log in

Ductility and brittleness of bone

  • Original Article
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Human, bovine and equine bones show brittle to ductile transitions as a function of strain rate. The transition is not sharp, but occurs around a strain rate of 10−1 s−1. At lower rates, the strength increases proportional to the logarithm of the strain rate, at higher rates it decreases. Additionally, the work of fracture peaks around 10−1 s−1. Thermal activation analysis gives an activation volume of (1 nm)3, an activation enthalpy of 1 eV and an activation energy of about 0.5 eV. Plastic deformation occurs both within and between collagen fibrils. In the fibrils, the existence of screw dislocations parallel to the collagen molecules with a Burger’s vector of 1 nm length is postulated. Deformation occurs by thermally activated kink pair formation in these defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AS Argon (1999) Rate processes in plastic deformation of crystalline and noncrystalline solids MA Meyers RW Armstrong HOK Kirchner (Eds) Mechanics and materials John Wiley New York 175–230

    Google Scholar 

  • MF Ashby (1992) Materials selection in mechanical design Butterworth-Heinemann Oxford

    Google Scholar 

  • MF Ashby LJ Gibson U Wegst R Olive (1957) ArticleTitleThe mechanical properties of natural materials. I. Material property charts Proc Roy Soc Lond A 450 132–140

    Google Scholar 

  • K Beck B Brodsky (1998) ArticleTitleSupercoiled protein motifs: the collagen triple-helix and the alpha-helical coiled coil J Struct Biol 122 17–29 Occurrence Handle10.1006/jsbi.1998.3965

    Article  Google Scholar 

  • DB Burr C Milgrom D Fyhrie M Forwood M Nyska A Finestone S Hoshaw E Saiag A Simkin (1996) ArticleTitleIn vivo measurements of human tibial strains during vigorous activity Bone 18 405–410 Occurrence Handle10.1016/8756-3282(96)00028-2

    Article  Google Scholar 

  • RD Crowninshield MH Pope (1974) ArticleTitleThe Response of compact bone in tension at various strain rates Ann Biomed Eng 2 217–225 Occurrence Handle10.1007/BF02368492

    Article  Google Scholar 

  • JD Currey (2002) Bones: structure and mechanics Princeton University Press Princeton

    Google Scholar 

  • GP Evans JC Behiri LC Vaughan W Bonfield (1992) ArticleTitleThe response of equine cortical bone to loading at strain rates experienced in vivo by the galopping horse Equine Vet J 24 125–128 Occurrence Handle10.1111/j.2042-3306.1992.tb02796.x

    Article  Google Scholar 

  • P Fratzl (2003) ArticleTitleCellulose and collagen: from fibres to tissues Curr Opin Colloid Sci 8 32–39 Occurrence Handle10.1016/S1359-0294(03)00011-6

    Article  Google Scholar 

  • P Fratzl N Fratzl-Zelman K Klaushofer (1993) ArticleTitleCollagen packing and mineralization Biophys J 64 260–266

    Google Scholar 

  • P Fratzl HS Gupta EP Paschalis P Roschger (2004) ArticleTitleStructure and mechanical quality of the collagen-mineral nanocomposite in bone J Mater Chem 14 2115–2123 Occurrence Handle10.1039/b402005g

    Article  Google Scholar 

  • H Gao J Baohua IL Jaeger E Arzt P Fratzl (2003) ArticleTitleMaterials become insensitive to flaws at nanoscale: Lessons from nature P Nat Acad Sci 100 5597–5600 Occurrence Handle10.1073/pnas.0631609100 Occurrence Handle2003PNAS..100.5597G

    Article  ADS  Google Scholar 

  • JM Gere SPl Timoshenko (1984) Mechanics of materials EditionNumber2 PWS Engineering Boston

    Google Scholar 

  • LJ Gibson MF Ashby (1988) Cellular solids EditionNumber2 Cambridge University Press Cambridge Occurrence Handle0723.73004

    MATH  Google Scholar 

  • LJ Gibson MF Ashby GN Karam U Wegst HR Shercliff (1957) ArticleTitleThe mechanical properties of natural materials. II. Microstructures for mechanical efficiency Proc Roy Soc Lond A 450 141–162 Occurrence Handle1995RSPSA.450..141G

    ADS  Google Scholar 

  • Gupta H, et al., this issue

  • Hillam (1996), Quote, by Currey (2002)

  • DJS Hulmes TJ Wess DJ Prockop P Fratzl (1995) ArticleTitleRadial packing, order and disorder in collagen fibrils Biophys J 68 1661–1670

    Google Scholar 

  • I Jaeger P Fratzl (2007) ArticleTitleMineralized collagen fibrils—a mechanical model with a staggered arrangement of mineral particles Biophys J 79 1737–1746

    Google Scholar 

  • HOK Kirchner (2001) Brittle fracture of snow E Bouchaud D Jeulin C Prioul S Roux (Eds) Physical aspects of fracture Kluwer Dordrecht 47–57

    Google Scholar 

  • HOK Kirchner G Michot H Narita T Suzuki (2001) ArticleTitleSnow as a foam of ice: plasticity, fracture and the brittle- to-ductile transition Phil. Mag A 81 2161–2181 Occurrence Handle10.1080/01418610010029043 Occurrence Handle2001PMagA..81.2161K

    Article  ADS  Google Scholar 

  • H Koizumi HOK Kirchner T Suzuki (1993) ArticleTitleKink pair nucleation and critical shear stress Acta Metall et Materialia 41 3483–3493 Occurrence Handle10.1016/0956-7151(93)90228-K

    Article  Google Scholar 

  • S Krag T Olsen TT Andreassen (1997) ArticleTitleBiomechanical characteristics of the human anterior lens capsule in relation with age Investigations in Ophthalmological and Visual Sciences 38 357–363

    Google Scholar 

  • JH McElhaney (1966) ArticleTitleDynamic response of bone and muscle tissue J Appl Phys 21 1231–1236

    Google Scholar 

  • G Michot (1988) ArticleTitleFundamentals of silicon fracture Crystal Properties and Preparation 17-18 55–98

    Google Scholar 

  • K Misof WJ Landis K Klaushofer P Fratzl (1997a) ArticleTitleCollagen from the osteogenesis imperfect mouse model (oim) shows reduced resistance against tensile stress J Clin Invest 100 40–45 Occurrence Handle10.1172/JCI119519

    Article  Google Scholar 

  • K Misof G Rapp P Fratzl (1997b) ArticleTitleA new molecular model for collagen elasticity based on synchrotron X-ray evidence Biophys J 72 1376–1381 Occurrence Handle10.1016/S0006-3495(97)78783-6

    Article  Google Scholar 

  • FRN Nabarro HL deVilliers (1995) The Physics of Creep Taylor and Francis London

    Google Scholar 

  • JBRO Orgel A Miller TC Irving RF Fischetti AP Hammersley T Wess (2001) ArticleTitleThe In Situ Supermolecular Structure of Type I Collagen Structure 9 1061–1069 Occurrence Handle10.1016/S0969-2126(01)00669-4

    Article  Google Scholar 

  • M Pithioux D Subit P Chabrand (2004) ArticleTitleComparison of compact bone failure under two different loading rates: experimental and modelling approaches Med Eng Phys 26 47–653 Occurrence Handle10.1016/j.medengphy.2004.05.002

    Article  Google Scholar 

  • R Puxkandl I Zizak O Paris J Keckes W Tesch S Bernstorff P Purslow P Fratzl (2002) ArticleTitleViscoelastic properties of collagen: synchrotron radiation investigations and structural model Philos T Roy Soc B 357 191–197 Occurrence Handle10.1098/rstb.2001.1033

    Article  Google Scholar 

  • JY Rho I Kuhn-Sperling P Zioupos (1998) ArticleTitleMechanical properties and the hierarchical structure of bone Med Eng Phys 20 92–102 Occurrence Handle10.1016/S1350-4533(98)00007-1

    Article  Google Scholar 

  • JR Rice N Lapusta K Ranjith (2001) ArticleTitleRate and state dependent friction and the stability of sliding between elastically deformable solids J Math Phys Solids 49 1865–1898 Occurrence Handle1093.74512 Occurrence Handle10.1016/S0022-5096(01)00042-4 Occurrence Handle2001JMPSo..49.1865R

    Article  MATH  ADS  Google Scholar 

  • J Riedle P Gumbsch HF Fischmeister (1996) ArticleTitleCleavage anisotropy in tungsten single crystals Phys Rev Lett 76 3594–3596 Occurrence Handle10.1103/PhysRevLett.76.3594 Occurrence Handle1996PhRvL..76.3594R

    Article  ADS  Google Scholar 

  • CM Rimnac AA Petko TJ Santner TM Wright (1993) ArticleTitleThe effect of temperature, stress and microstructure on the creep of compact bovine bone J Biomech 26 219–228 Occurrence Handle10.1016/0021-9290(93)90360-Q

    Article  Google Scholar 

  • DM Robertson DC Smith (1978) ArticleTitleCompressive strength of mandibular bone as a function of microstructure and strain rate J Biomech 11 455–471 Occurrence Handle10.1016/0021-9290(78)90057-X

    Article  Google Scholar 

  • G Schoeck (1965) ArticleTitleThe activation energy of dislocation movement Phys Status Solidi 8 499–507

    Google Scholar 

  • A Seeger (1981) ArticleTitleThe temperature and strain-rate dependeence of the flow stress of body-centered cubic metals Z Metallkd 72 369–380

    Google Scholar 

  • A Seeger P Schiller (1966) Kinks in dislocation lines and their effects on the internal friction in crystals WP Mason (Eds) Physical acoustics IIIA Academic Press New York 361–495

    Google Scholar 

  • TJ Wess AP Hammersley L Wess A Miller (1998) ArticleTitleA consensus model for molecular packing of Type I collagen J Struct Biol 122 92–100 Occurrence Handle10.1006/jsbi.1998.3991

    Article  Google Scholar 

  • TM Wright WC Hayes (1976) ArticleTitleTensile testing of bone over a wide range of strain rates: effects of strain rate, microstructure and density Med Biol Eng 14 671–679 Occurrence Handle10.1007/BF02477046

    Article  Google Scholar 

  • P. Zioupos, 139:407–424

  • Zioupos P, Hansen U, Currey JD (2005) Private communication by Prof. Zioupos, Cranfield University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Kirchner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchner, H. Ductility and brittleness of bone. Int J Fract 139, 509–516 (2006). https://doi.org/10.1007/s10704-006-0050-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-0050-2

Keywords

Navigation