International Journal of Fracture

, Volume 140, Issue 1–4, pp 201–212 | Cite as

Crack-like processes governing the onset of frictional slip

  • Shmuel M. Rubinstein
  • Meni Shay
  • Gil Cohen
  • Jay Fineberg


We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of ‘slow detachment fronts’. These fronts propagate at ‘anomalously’ slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.


Friction Fracture Slip Detachment Earthquakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, FF 2003How fast can cracks move? A research adventure in materials failure using millions of atoms and big computersAdva Phys52727790CrossRefADSGoogle Scholar
  2. Ammon, CJ, Ji, C, Thio, HK, Robinson, D, Ni, SD, Hjorleifsdottir, V, Kanamori, H, Lay, T, Das, S, Helmberger, D.,  et al. 2005Rupture process of the 2004 Sumatra-Andaman earthquakeScience30811331139CrossRefADSGoogle Scholar
  3. Andrews, DJ 1976Rupture velocity of plane strain shear cracksJ Geophys Res-Solid Earth815679ADSGoogle Scholar
  4. Andrews, DJ, BenZion, Y 1997Wrinkle-like slip pulse on a fault between different materialsJ Geophys Res-Solid Earth102553571CrossRefADSGoogle Scholar
  5. Archard, JF 1957Elastic deformation and the laws of frictionProc R Soc London, Ser A (Math Phys Sci)243190205ADSGoogle Scholar
  6. Baumberger, T, Berthoud, P, Caroli, C 1999Physical analysis of the state- and rate-dependent friction law. II. Dynamic frictionPhys Rev B6039283939CrossRefADSGoogle Scholar
  7. Ben-Zion, Y 2001Dynamic ruptures in recent models of earthquake faultsJ Mech Phys Solids4922092244MATHCrossRefADSGoogle Scholar
  8. Ben-Zion, Y, Andrews, DJ 1998Properties and implications of dynamic rupture along a material interfaceBull Seismol Soc Am8810851094Google Scholar
  9. Bilham, R 2005A flying start, then a slow slipScience30811261127CrossRefADSGoogle Scholar
  10. Bouchon, M, Bouin, MP, Karabulut, H, Toksoz, MN, Dietrich, M, Rosakis, AJ 2001How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakesGeophy Res Lett2827232726CrossRefADSGoogle Scholar
  11. Bouissou, S, Petit, JP, Barquins, M 1998Experimental evidence of contact loss during stick-slip: possible implications for seismic behaviourTectonophy295341350CrossRefADSGoogle Scholar
  12. Bowden FP, Tabor D (2001) The friction and lubrication of solids, 2 edn. Oxford Univ. Press New YorkGoogle Scholar
  13. Briscoe, BJ, Fiori, L, Pelillo, E 1998Nano-indentation of polymeric surfacesJ Phys D-Appl Phy3123952405CrossRefADSGoogle Scholar
  14. Buczkowski, R, Kleiber, M 2000Statistical model of strongly anisotropic rough surfaces for finite element contact analysisInt J Numer Methods Eng4911691189MATHCrossRefGoogle Scholar
  15. Ciliberto, S, Laroche, C 1999Energy dissipation in solid frictionEur Phys J B9551558CrossRefADSGoogle Scholar
  16. Cochard, A, Rice, JR 2000Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse responseJ Geophys Res-Solid Earth1052589125907CrossRefADSGoogle Scholar
  17. Coker, D, Lykotrafitis, G, Needleman, A, Rosakis, AJ 2005Frictional sliding modes along an interface between identical elastic plates subject to shear impact loadingJ Mech Phys Solids53884922CrossRefMATHADSGoogle Scholar
  18. Coker, D, Rosakis, AJ, Needleman, A 2003Dynamic crack growth along a polymer composite-Homalite interface. J Mech Phys Solids51425460MATHCrossRefADSGoogle Scholar
  19. Crescentini, L, Amoruso, A, Scarpa, R 1999Constraints on slow earthquake dynamics from a swarm in central ItalyScience28621322134CrossRefGoogle Scholar
  20. Dieterich, JH, Kilgore, BD 1994Direct observation of frictional contacts – new insights for state-dependent propertiesPure Appl Geophys143283302CrossRefADSGoogle Scholar
  21. Filippov, AE, Klafter, J, Urbakh, M 2004Friction through dynamical formation and rupture of molecular bondsPhys Rev Lett92135503CrossRefADSGoogle Scholar
  22. Freund, LB 1979The mechanics of dynamic shear crack propagationJ Geophys Res8421992209ADSCrossRefGoogle Scholar
  23. Gao, HJ, Huang, YG, Abraham, FF 2001Continuum and atomistic studies of intersonic crack propagationJ Mech Phys Solids4921132132MATHCrossRefADSGoogle Scholar
  24. Greenwood, JA, Williams, JBP 1966Contact of nominally flat surfacesProc R Soc London, Ser A (Math Phys Sci)295300319ADSCrossRefGoogle Scholar
  25. Heaton, TH 1990Evidence for and implications of self-healing pulses of slip in earthquake rupturePhys Earth Planet Interiors64120CrossRefADSGoogle Scholar
  26. Kogut, L, Etsion, I 2002Elastic-plastic contact analysis of a sphere and a rigid flatJ Appl Mech-Trans ASME69657662MATHCrossRefGoogle Scholar
  27. Kogut, L, Etsion, I 2003A finite element based elastic-plastic model for the contact of rough surfacesTribology Trans46383390Google Scholar
  28. Lapusta N, Rice JR (2003) Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys Res-Solid Earth 108:doi:10.1029/2001JB000793Google Scholar
  29. Lapusta, N, Rice, JR, Ben-Zion, Y., Zheng, GT 2000Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent frictionJ Geophys Res-Solid Earth1052376523789CrossRefADSGoogle Scholar
  30. Lay, T, Kanamori, H, Ammon, CJ, Nettles, M, Ward, SN, Aster, RC, Beck, SL, Bilek, SL, Brudzinski, MR, Butler, R,  et al. 2005The great Sumatra-Andaman earthquake of 26 December 2004Science30811271133CrossRefADSGoogle Scholar
  31. Linde, AT, Sacks, IS 2002Slow earthquakes and great earthquakes along the Nankai troughEarth Planet Sci Lett203265275CrossRefADSGoogle Scholar
  32. Muser, MH, Wenning, L, Robbins, MO 2001Simple microscopic theory of Amontons’s laws for static frictionPhys Rev Lett8612951298CrossRefADSGoogle Scholar
  33. Needleman, A 1999An analysis of intersonic crack growth under shear loadingJ Appl Mech-Trans ASME66847857CrossRefGoogle Scholar
  34. Ohnaka M (2003) A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. J Geophys Res-Solid Earth 108:doi:10.1029/2000JB000123Google Scholar
  35. Ohnaka, M, Shen, LF 1999Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfacesJ Geophys Res-Solid Earth104817844CrossRefADSGoogle Scholar
  36. Persson BNJ (2002) Sliding friction physical principles and applications, 2nd edn. Springer-Verlag New YorkGoogle Scholar
  37. Rabinowicz E (1995) Friction and wear of materials, 2nd edn. John Wiley & Sons Inc New YorkGoogle Scholar
  38. Ravi-Chandar, K, Lu, J, Yang, B, Zhu, Z 2000Failure mode transitions in polymers under high strain rate loadingInt J Fracture1013372CrossRefGoogle Scholar
  39. Rice, JR, Lapusta, N, Ranjith, K 2001Rate and state dependent friction and the stability of sliding between elastically deformable solidsJ Mech Phys Solids4918651898MATHCrossRefADSGoogle Scholar
  40. Rogers, G, Dragert, H 2003Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slipScience30019421943CrossRefADSGoogle Scholar
  41. Rosakis, AJ 2000Intersonic shear cracks and fault rupturesAdv Phys5111891257CrossRefADSGoogle Scholar
  42. Rosakis, AJ, Samudrala, O, Coker, D 1999Cracks faster than the shear wave speedScience28413371340CrossRefADSGoogle Scholar
  43. Rubinstein, SM, Cohen, G, Fineberg, J 2004Detachment fronts and the onset of dynamic frictionNature43010051009CrossRefADSGoogle Scholar
  44. Scholz, CH 1998Earthquakes and friction lawsNature3913742CrossRefADSGoogle Scholar
  45. Urbakh, M, Klafter, J, Gourdon, D, Israelachvili, J 2004The nonlinear nature of frictionNature430525528CrossRefADSGoogle Scholar
  46. Xia, KW, Rosakis, AJ, Kanamori, H 2004Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transitionScience30318591861CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2006

Authors and Affiliations

  • Shmuel M. Rubinstein
    • 1
  • Meni Shay
    • 1
  • Gil Cohen
    • 1
  • Jay Fineberg
    • 1
  1. 1.The Racah Institute of PhysicsThe Hebrew University of JerusalemGivat RamIsrael

Personalised recommendations